February 18 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Section 1.8

Keywords: one-sided limits, Limit Laws

Limits CONTD.

- Let $f(x)$ be a function. Write $\lim _{x \rightarrow a} f(x)=L$ if the values of $f(x)$ approach L as x gets closer and closer, but not equal, to a.

Example: Let $f(x)=\frac{|x-5|}{x-5}, x \neq 5$.

- If $x>5$ then $x-5>0$ and $|x-5|=x-5$. Hence, $f(x)=1$ whenever $x>5$.
- If $x<5$ then $x-5<0$ and $|x-5|=-(x-5)$. Hence, $f(x)=-1$ whenever $x<5$.

- if x approaches 5 from the right then $f(x)$ approaches $L=1$; we write

$$
\lim _{x \rightarrow 5^{+}} f(x)=1
$$

- if x approaches 5 from the left then $f(x)$ approaches $L=-1$; we write

$$
\lim _{x \rightarrow 5^{-}} f(x)=-1
$$

As x gets close to $a=5$ there are two possibilities for $L \Longrightarrow \lim _{x \rightarrow 5} f(x)$ does not exist (DNE). Call $\lim _{x \rightarrow 5^{ \pm}} f(x)$ one-sided limits.

- Even though the two-sided limit $\lim _{x \rightarrow 5} f(x)$ DNE, the two one-sided limits do exist. - In general, $\lim _{x \rightarrow c} f(x)$ exists if both one-sided limits $\lim _{x \rightarrow c^{ \pm}} f(x)$ exist and are equal.

- Some further non-existent limits:

1. Consider the function $f(x)=\frac{1}{x^{2}}$. Then, as x gets closer and closer to $0, f(x)$ grows without bound i.e. there is no finite value L that $f(x)$ approaches as x approaches 0. Hence, $\lim _{x \rightarrow 0} f(x)$ DNE.
In this very special case - when $f(x)$ grows without bound as x approaches 0 - we write $\lim _{x \rightarrow 0} f(x)=+\infty$. It's important to remember that this limit does not exist.

2. Let $f(x)=\frac{1}{x}$. Then, as x gets closer and closer to 0 , with $x>0, f(x)$ grows without bound in the positive direction. Hence, $\lim _{x \rightarrow 0^{+}} f(x)$ DNE and we write $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ to denote this behaviour.
Similarly, as x gets closer and closer to 0 , with $x<0, f(x)$ grows without bound in the negative direction. Hence, $\lim _{x \rightarrow 0^{-}} f(x)$ DNE and we write $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$ to denote this behaviour.
In particular, neither one-sided limits exist.

