February 12 Summary

Supplementary References:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.4

Keywords: Horizontal Line Test, exponential functions, logarithm

INVERSE FUNCTIONS; EXPONENTIAL FUNCTIONS

Horizontal Line Test: If the graph $y=f(x)$ has the property that any horizontal line $y=L$ intersects the graph at most once then $f(x)$ admits an inverse function $f^{-1}(x)$.

- We have the algebraic relationship

$$
\begin{aligned}
& f^{-1}(f(x))=x, \text { for every } x \text { in the domain of } f(x) \\
& f\left(f^{-1}(x)\right)=x, \text { for every } x \text { in the domain of } f^{-1}(x) .
\end{aligned}
$$

Moreover,

- domain of $f(x)=$ codomain/range of $f^{-1}(x)$
- codomain/range of $f(x)=$ domain of $f^{-1}(x)$
- Let $f(x)$ be a function whose graph passes the HLT. How to find a formula defining $f^{-1}(x)$?
Consider $f(x)=\frac{1}{1-x}, x \neq 1$. Then, we must have

$$
x=f^{-1}(f(x))=f^{-1}\left(\frac{1}{1-x}\right)
$$

i.e. if $y=f(x)=\frac{1}{1-x}$ then $f^{-1}(y)=x$. Note: the formula for $f^{-1}(y)$ should be in terms of $y \Longrightarrow$ we need to solve the equation $f^{-1}(y)=x$ for y i.e. write x in terms of y.

$$
\begin{aligned}
y=\frac{1}{1-x} & \Longrightarrow y(1-x)=1 \\
& \Longrightarrow 1-x=\frac{1}{y} \\
& \Longrightarrow x=1-\frac{1}{y}
\end{aligned}
$$

Hence, $f^{-1}(y)=1-\frac{1}{y}$.
To get a formula for $f^{-1}(x)$:

- set $x=f(y)$,
- solve for y in terms of x,
- $y=f^{-1}(x)$

Example: Let $f(x)=2(x+3)^{3}$.

Using Desmos, we see that $y=f(x)$ passes HLT.

- Set $x=f(y)=2(y+3)^{3}$
- Solve for y :

$$
\begin{aligned}
& x=2(y+3)^{3} \\
\Longrightarrow & \frac{x}{2}=(y+3)^{3} \\
\Longrightarrow & \sqrt[3]{\frac{x}{2}}=y+3 \\
\Longrightarrow & \sqrt[3]{\frac{x}{2}}-3=y
\end{aligned}
$$

- Hence, $f^{-1}(x)=y=\sqrt[3]{\frac{x}{2}}-3$.

Remark: To get the graph of $f^{-1}(x)$ flip the graph $y=f(x)$ in the $y=x$ line:

Exponential functions:

- any function of the form $P(x)=K a^{x}$, where K constant, $a>0$, is called exponential function with base a
e.g. $P(x)=\frac{5^{x}}{2}$ is exponential with base 5 .
- Domain of any exponential function is \mathbb{R}.
- Remark: Require $a>0$ to ensure $P(x)$ is well-defined (e.g. to allow fractional inputs).
- If $a>1$ then exponential growth; if $0<a<1$ then exponential decay. Exponential functions model growth/decay of populations:
- growth/decay of bacteria,
- compound interest,
- radioactive decay.

- The graph of $P(x)=a^{x}$ passes HLT $\Longrightarrow P(x)$ has an inverse. We call this inverse the logarithm of base a; denoted $\log _{a}(x)$.
- Properties:

$$
a^{\log _{a}(x)}=x, \quad \log _{a}\left(a^{x}\right)=x
$$

and

$$
\log _{a}(x)=c \quad \Leftrightarrow \quad x=a^{c}
$$

- domain of $\log _{a}(x)=$ range of $a^{x}=$ positive real numbers.
- range of $\log _{a}(x)=$ domain of $a^{x}=\mathbb{R}$.

