

Math 121B: Single-Variable Calculus Spring 2019

Contact: gwmelvin@colby.edu

February 12 Summary

SUPPLEMENTARY REFERENCES:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.4

KEYWORDS: Horizontal Line Test, exponential functions, logarithm

INVERSE FUNCTIONS; EXPONENTIAL FUNCTIONS

Horizontal Line Test: If the graph y = f(x) has the property that any horizontal line y = L intersects the graph at most once then f(x) admits an inverse function $f^{-1}(x)$.

• We have the algebraic relationship

 $f^{-1}(f(x)) = x$, for every x in the domain of f(x),

 $f(f^{-1}(x)) = x$, for every x in the domain of $f^{-1}(x)$.

Moreover,

- domain of $f(x) = \text{codomain/range of } f^{-1}(x)$
- codomain/range of $f(x) = \text{domain of } f^{-1}(x)$

• Let f(x) be a function whose graph passes the HLT. How to find a formula defining $f^{-1}(x)$?

Consider $f(x) = \frac{1}{1-x}$, $x \neq 1$. Then, we must have

$$x = f^{-1}(f(x)) = f^{-1}\left(\frac{1}{1-x}\right)$$

i.e. if $y = f(x) = \frac{1}{1-x}$ then $f^{-1}(y) = x$. Note: the formula for $f^{-1}(y)$ should be in terms of $y \implies$ we need to solve the equation $f^{-1}(y) = x$ for y i.e. write x in terms of y.

$$y = \frac{1}{1-x} \implies y(1-x) = 1$$
$$\implies 1-x = \frac{1}{y}$$
$$\implies x = 1 - \frac{1}{y}$$

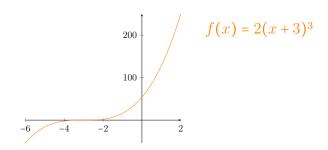
Hence, $f^{-1}(y) = 1 - \frac{1}{y}$.

To get a formula for $f^{-1}(x)$:

• set x = f(y),

- solve for y in terms of x,
- $y = f^{-1}(x)$

Example: Let $f(x) = 2(x+3)^3$.



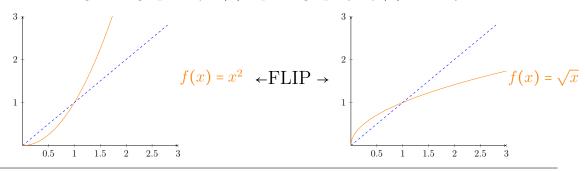
Using Desmos, we see that y = f(x) passes HLT.

- Set $x = f(y) = 2(y+3)^3$
- Solve for y:

$$x = 2(y+3)^{3}$$
$$\implies \frac{x}{2} = (y+3)^{3}$$
$$\implies \sqrt[3]{\frac{x}{2}} = y+3$$
$$\implies \sqrt[3]{\frac{x}{2}} - 3 = y$$

• Hence,
$$f^{-1}(x) = y = \sqrt[3]{\frac{x}{2}} - 3$$
.

Remark: To get the graph of $f^{-1}(x)$ flip the graph y = f(x) in the y = x line:



Exponential functions:

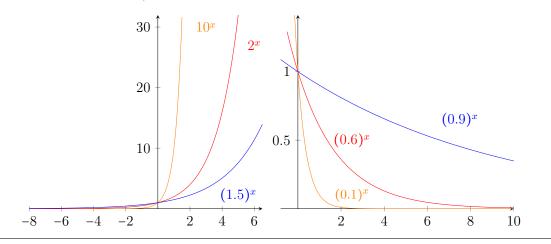
• any function of the form $P(x) = Ka^x$, where K constant, a > 0, is called **exponential function with base** a

e.g. $P(x) = \frac{5^x}{2}$ is exponential with base 5.

- Domain of any exponential function is \mathbb{R} .
- **Remark:** Require a > 0 to ensure P(x) is well-defined (e.g. to allow fractional inputs).

• If a > 1 then **exponential growth**; if 0 < a < 1 then **exponential decay**. Exponential functions model growth/decay of populations:

- growth/decay of bacteria,
- compound interest,
- radioactive decay.



• The graph of $P(x) = a^x$ passes HLT $\implies P(x)$ has an inverse. We call this inverse the logarithm of base a; denoted $\log_a(x)$.

• Properties:

$$a^{\log_a(x)} = x, \quad \log_a(a^x) = x$$

and

$$\log_a(x) = c \quad \Leftrightarrow \quad x = a^c$$

- domain of $\log_a(x)$ = range of a^x = positive real numbers.
- range of $\log_a(x) = \text{domain of } a^x = \mathbb{R}$.

