

Math 121B: Single-Variable Calculus Spring 2019

Contact: gwmelvin@colby.edu

February 11 Summary

SUPPLEMENTARY REFERENCES:

- Calculus, Hughes-Hallet et al, Sections 1.2, 1.4

KEYWORDS: Horizontal Line Test, exponential functions

HORIZONTAL LINE TEST; EXPONENTIAL FUNCTIONS

• Notation: \mathbb{R} denotes the collection of all real numbers.

• **Recall:** $f(x) = \frac{1}{1-x}$, $g(x) = 1 - \frac{1}{x}$. Then,

$$f(g(x)) = x$$
, and $g(f(x)) = x$, (*)

i.e. g(x) is the **inverse of** f(x); write $g(x) = f^{-1}(x)$.

- Both graphs pass Horizontal Line Test (HLT): any horizontal line y = L intersects the graph at most once. This is graphical interpretation of (*).
- HLT provides criterion to check if a function f(x) admits an inverse: if the graph y = f(x) passes HLT then f(x) has an inverse.
- Example:
 - 1. $f(x) = x^3$, domain = \mathbb{R} .

The graph y = f(x) passes HLT $\Longrightarrow f(x)$ has an inverse $f^{-1}(x)$. What is it? f^{-1} is function that 'solves for x: i.e. if y = f(x) then $f^{-1}(y) = x$ i.e. $f^{-1}(x^3) = x$. Hence, f^{-1} is the cube root function $f^{-1}(x) = \sqrt[3]{x} = x^{1/3}$.

2. $f(x) = x^2$, domain = \mathbb{R} .

Does not pass HLT \implies does not possess an inverse. Can remedy the situation: for example, restrict the domain to all nonnegative real numbers. Then, the graph of this new function is

This function passes HLT: f(x) has inverse $f^{-1}(x) = \sqrt{x}$.

• If we restrict the domain to nonpositive real numbers then the graph is

and $f^{-1}(x) = -\sqrt{x}$.

• To get the graph of $f^{-1}(x)$ flip the graph y = f(x) in the y = x line:

• To determine $f^{-1}(x)$ algebraically: set f(y) = x and solve for y e.g. $f(x) = 2(x+3)^3$

$$x = f(y) = 2(y+3)^3 \implies y = \sqrt[3]{\frac{x}{2}} - 3 \implies f^{-1}(x) = \sqrt[3]{\frac{x}{2}} - 3$$

2

Exponential functions:

- any function of the form $P(x) = Ka^x$, where K constant, a > 0, is called **exponential function with base** a
- e.g. $P(x) = \frac{5^x}{2}$ is exponential with base 5.
- Domain of any exponential function is \mathbb{R} .
- Remark: Require a > 0 to ensure P(x) is well-defined (e.g. to allow fractional inputs).
- If a > 1 then **exponential growth**; if 0 < a < 1 then **exponential decay**. Exponential functions model growth/decay of populations:
 - growth/decay of bacteria,
 - compound interest,
 - radioactive decay.

• Euler's number e = 2.71828... plays important role in calculus. We will consider exponential functions with base e; exponential functions of the form $f(x) = e^{kx}$, where k is a constant.