Sage and Gp: A (Very) Short Introduction

Mathematical software is part of the standard toolkit of mathematicians. Through-

out this course we will use the programs Sage and Gp to do computations. The goal
of this handout is to provide some basic orientation on the two programs, includ-
ing where to get them. Both programs are free, both can be used online or installed
on your own machine, both are very powerful, and both take some time to learn.

The two programs are different in several ways. GP is mostly intended for use
by number theorists, while Sage wants to tackle all kinds of mathematics. Indeed,
Sage has incorporated the functionality of many other free mathematics programs,
including Maxima, Octave, R, GAP, and even GP itsef. Sage runs in a browser win-
dow or a terminal, while Gp is more old-fashioned and runs in a terminal window.
I learned Gp first, and it’s still my go-to program for quick computations, but lately
I have been trying to teach my students to use Sage.

Of course, there are other mathematical software tools. Both Maple and Math-
ematica are well-known and quite powerful. The people who make Mathematica
are also behind Wolfram Alpha, which can do lots of mathematics as well. These
can all do some of the things we need to do, but I have decided to focus on Gp and
Sage because they are free and I know how to use them.

Pari and GP

The interactive calculator Gp was designed to serve the needs of people working
in number theory. It is actually a front end for a software library called Pari, which
can be used to create mathematical programs in C and C++. (Such programs are
faster than using Gp, but for most things Gp is fast enough.)

Pari and Gr were created by Henri Cohen and his team in 1985 and it has
continued to grow since them. The current chief developer is Karim Belabas, who
has many collaborators. The Pari-Gp system is still actively developed, with new
features being added and bugs being fixed all the time. The home web site for
Pari-Gp is where you go to download it, but you can also find a lot of information
there.

The normal way to use GP is to download and install it on your computer. The
installer will usually create an icon on your desktop; clicking that icon opens a
terminal window where you will see something like this.

GP/PARI CALCULATOR Version 2.11.2 (released)
amd64 running mingw (x86-64/GMP-6.1.2 kernel) 64-bit version
compiled: Apr 28 2019, gcc version 6.3.0 20170516 (GCC)
threading engine: single
(readline v6.2 enabled, extended help enabled)

Copyright (C) 2000-2018 The PARI Group

Your superior intellect is no match for our puny weapons!

https://www.wolframalpha.com/
pari.math.u-bordeaux.fr

PARI/GP is free software, covered by the GNU General Public License,
and comes WITHOUT ANY WARRANTY WHATSOEVER.

Type 7 for help, \g to quit.
Type 717 for how to get moral (and possibly technical) support.

parisize = 8000000, primelimit = 500000
gp >

Some things to note:

e The last line is a prompt: GP expects you to type in some instruction and then
hit the enter/return key. Prompts are configurable; on my machine it is the
current time followed by gp >

e If you type \q and hit enter/return you will exit the program.

e If you type a question mark or a question mark followed by a number you
will get (some) help.

Let’s try something simple.

gp > 25!
%1 = 15511210043330985984000000

Notice that Gp understands the factorial notation and is not afraid of computing
large numbers. Also notice that it uses %1 to label the result. You can later refer to
this number by that name if you want to. Or you can give it a name.

gp > a=44/5
%2 = 44/5

The basic philosophy of Gp is that it assumes the numbers you enter are in the
simplest setting that makes sense. In this case, GP assumes that you mean the
rational number 44/5. 1f you want the decimal version (i.e., the real number), you
can either make it a decimal from the beginning or multiply it by 1.0.

\4

gp > b=44.0/5

%3 = 8.8000000000000000000000000000000000000
gp > a*x1.0

%4 = 8.8000000000000000000000000000000000000

Real numbers are presented with a default precision, in this case 38 significant
digits. You can enter polynomials in the usual way.

| know you’re supposed to take life one day at a time — but lately several days have attacked me at once.

gp > p=x"2-2*x+1

%5 = x"2 - 2%x + 1

gp > q = x72 - 3*%x + 2

%6 = x"2 - 3%x + 2

gp > pP*q

%7 = x4 - B*xx~3 + 9xx"2 - Txx + 2
gp > p/q

%= (x-1/(x - 2)

Notice that the quotient of two polynomials is a rational function, given in lowest
terms. What if we try something strange?

gp > log(p)

%9 = -2*%x - x72 - 2/3*x"3 - 1/2%x~4 - 2/5%x"5 - 1/3*x"6 - 2/7*x"7
- 1/4*%x"8 - 2/9%x~9 - 1/5*%x~10 - 2/11%x~11 - 1/6*%x~12 - 2/13*x"13
- 1/7*x~14 - 2/15*%x~15 + 0(x"16)

As usual, gr makes the most reasonable interpretation of what you want, and
returns the Taylor series. (The output is actually one long line, which I have broken
up to make it easier to read.)

Factoring is straightforward.

gp > factor(42)
%10 =
[2 1]
[3 1]
[7 1]

Notice that the answer is a matrix whose rows give the prime factors and then the
powers. Hard(er) factorizations are fine too:

gp > factor(23432432)
AR

[2 4]

[313 1]

[4679 1]

One computation you will be doing a lot is finding the greatest common divisor:

gp > gcd(1421541,243234)
K12 =9

There’s also gcdext, which will be even more useful.
If the input of factor is a polynomial, that’s fine too.

gp > factor(x~3+x)
H13 =
L x 1]

[x~2 + 1 1]

We can enter numbers modulo m (if you don’t know what those are, don’t
worry, you soon will) and do operations with them.

gp

> Mod (234,37)

%14 = Mod (12, 37)

gp

> %10°16

%15 = Mod (9, 37)

gp

> 1/%10

%16 = Mod(34, 37)

gp

> %10°36

%17 = Mod(1, 37)

All Gpr constructions are iterative, so you can construct polynomials with coeffi-
cients in Z/377 and so on. Things can break if you overdo it (for example, power
series in x whose coefficients are power series in y are problematic), but generally
it all works well.

What if we ask for help?
gp > 7
Help topics: for a list of relevant subtopics, type "n for n in
0: user-defined functions (aliases, installed and user functions)
1: PROGRAMMING under GP
2: Standard monadic or dyadic OPERATORS
3: CONVERSIONS and similar elementary functions
4: functions related to COMBINATORICS
5: NUMBER THEORETICAL functions
6: POLYNOMIALS and power series
7: Vectors, matrices, LINEAR ALGEBRA and sets
8: TRANSCENDENTAL functions
9: SUMS, products, integrals and similar functions
10: General NUMBER FIELDS
11: Associative and central simple ALGEBRAS
12: ELLIPTIC CURVES
13: L-FUNCTIONS
14: MODULAR FORMS
15: MODULAR SYMBOLS
16: GRAPHIC functions
17: The PARI community
Also:
7 functionname (short on-line help)
7\ (keyboard shortcuts)
7. (member functions)

Extended help (if available):

77
77

(opens the full user’s manual in a dvi previewer)
tutorial / refcard / libpari

(tutorial/reference card/libpari manual)
?? refcard-ell

(or -1fun/-mf/-nf: specialized reference card)
7?7 keyword (long help text about "keyword" from the user’s manual)
777 keyword (a propos: list of related functions).

The next step is to make a more specific request for help, say with 75 or ?gcd. As
that list shows, GP can do a lot.

While the default way to use GP is in a terminal window, there is also a (rather
new) browser-based version. It is also possible to use the Sage Cell Server (see
below) in gp-mode to do quick computations.

There is a lot more to say, but that should get you started. At the Pari-Gp home
page you can find a tutorial and a user’s manual. There are also email lists where
you can ask for help if necessary.

Sage

Sage is an ambitious attempt to create powerful mathematical software that is
free and open-source. The ultimate ambition, says the Sage home page, is to create
“a viable free open source alternative to Magma, Maple, Mathematica and MAT-
LAB.” (I’d say that they are very close to that, and in some aspects well beyond.)
The development approach emphasizes openness: while William Stein is the leader
of the team, contributions have come from across the mathematical community.

Sage can be used through a web interface, without needing to download and
install the program. There are two ways to do that: either the Sage Cell Server or
the more elaborate interface based on projects and notebooks offered by CoCalc. It
is also possible to download and install the program on your own computer. When
you do, you can run Sage in a terminal window or you can run it in your browser.
The latter is much like using CoCalc, but the program is running on your local
machine.

Of the two web interfaces, the Sage Cell Server is particularly easy to use for
small computations. It presents the user with a big blank rectangle where one can
type in Sage commands. Below is a button labeled “Evaluate,” which does exactly
that. The output appears below. The downside is that Sage will not remember
what you did, so if you define a symbol and then press the “Evaluate” button, you
cannot use it again without repeating the definition.

There are two very nice features of the Cell Server that deserve note. First,
it works on a tablet or phone. Second, because Sage incorporates Gp and other
open-source mathematical software, the Cell Server can be put into Gp mode to do
computations in GP. I have also used it in R mode.

CoCalc requires creating an account. Once you log in to your account, you can
create projects, and each project can contain many notebooks. Notebooks allow
you to enter lines of Sage code, which are evaluated when you hit Shift-Enter.
Definitions and results are remembered within each session.

https://pari.math.u-bordeaux.fr/gp.html
www.sagemath.org
sagecell.sage.org
cocalc.com

If you are going to use the program a lot, then of course the right thing to do is
to download and install it. It takes quite a bit of space, but having it on your own
machine avoids connectivity issues.

In mathematical terms, there is an important philosophical difference between
Gp and Sage. In Gp, as we noted, the program assumes (or guesses) the mathe-
matical context for the objects you create. Sage, on the other hand, prefers to be
told. You do that by creating a ring or field (or something else) in which you are
operating.

Time to show some examples. You can find many more in A Tour of Sage,
which is available online.

The basic “calculator” commands work as expected. Entering

3 +5
57.17100

into the Sage Cell Server and hitting “Evaluate” will produce

8
4.6090436866139440331100747777535910369 E175

You can get some space between the two lines of output by adding print(" ")
between the two commands. Here we find the inverse of a matrix:

matrix([[1,2],[3,4]11)~(-1)

results in
[-2 1]
[3/2 -1/2]

Notice that you can enter a matrix by providing a list in brackets containing the
rows as lists in brackets. (There are other ways; most things in Sage can be done in
several different ways.) Let’s try some calculus:

x = var(’x’)
f=integrate(sqrt(x)*sqrt(1+x), x)

That may surprise you: there would be no output at all. Sage has been told x
is a variable and to assign the symbol f to the answer. It does, but doesn’t print
anything out. To see the answer you need to say

x = var(’x’)
f=integrate(sqrt(x)*sqrt(1+x), x)
print (f)

The result now is

1/4x((x + 1)°(3/2)/x~(3/2) + sqrt(x + 1)/sqrt(x))/((x + 1)°2/x"2
- 2x(x + 1)/x + 1) - 1/8xlog(sqrt(x + 1)/sqrt(x) + 1)
+ 1/8%log(sqrt(x + 1)/sqrt(x) - 1)

http://doc.sagemath.org/html/en/a_tour_of_sage/

That answer is very hard to read. It’s good to know that you can also do it like
this:

x = var(’x’)
f=integrate(sqrt(x)*sqrt(1+x), x)
show (f)

That gives something like:

3
(x+1)2 Vx+1
S \/% —110g<xi+]+1)+llog(X—H—1)
4<(x;1)2_z(xx+1)+1) 8 N 8 VX

There is also latex(f), which is what I did to get the ISIEX code to typeset the
result. While show produces output that is nicer to look at, the output of print is
easier to cut-and-paste. In general, it’s best to ask Sage to either print or show the
outputs you want to see.

I should remark that there are subtle differences between writing £f= as above
and writing f (x)=. The Sage Tutorial is helpful on this issue.

As mentioned above, Sage likes to know in what ring it is working. Indeed, it
will assume one if you don’t give it one.

M=matrix([[1,2], [3,4]1])
print M.base_ring()

results in
Integer Ring

That is, Sage has assumed your matrix lives in M,(Z). You can tell it otherwise by
adding the name of a ring to the command that creates the matrix:

M=matrix(CC, [[1,2], [3,41])
print M.base_ring()
print M

results in

Complex Field with 53 bits of precision
[1.00000000000000 2.00000000000000]
[3.00000000000000 4.00000000000000]

Notice that a complex number is a + bi with a, b € R, so that both a and b will be
printed as real numbers, i.e., as decimal expansions.

Many commands in Sage use the object-oriented A.something() format as
above; sometimes you need to put something into the parentheses, but often they
just need to be there. One advantage of CoCalc and the terminal interface is that if
you type A. and then hit the Tab key, you will get a list of possible continuations.
Here’s a selection of matrix commands:

http://doc.sagemath.org/html/en/tutorial/

M=matrix(QQ, [[1,2], [3,411)

print (M)

print(" ")
M.characteristic_polynomial ()
print(" ")

M.column_space()

print(" ")

M.determinant ()

print(" ")

M.eigenspaces_right ()

The QQ tells Sage to think of this as a matrix with rational coefficients. The output
1S

[1 2]
[3 4]

X~2 - bxx - 2

Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:

[1 0]

[0 1]

-2

I
(-0.37228132326901447, Vector space of degree 2 and dimension 1

over Algebraic Field

User basis matrix:

[1 -0.68614066163450727]),
(56.3722813232690157, Vector space of degree 2 and dimension 1
over Algebraic Field

User basis matrix:

[1 2.1861406616345087])

]

Without the QQ, the column_space function would return a free Z-module of rank
two rather than a vector space. But notice that when you ask for eigenspaces Sage
will move to the real or complex numbers if necessary. It’s also worth noticing
that Sage can think of matrices acting on vectors on the right or on the left, so you
should use things like kernel_right () rather than just kernel().

That’s probably enough to start. To learn more, start with the Tour of Sage,
then go on to theSage Tutorial. See also Sage for Undergraduates, which is avaliable
online as well as in print. There’s a lot more helpful documentation online.

http://doc.sagemath.org/html/en/a_tour_of_sage/
http://doc.sagemath.org/html/en/tutorial
http://www.gregory-bard.com/books.html

	Pari and GP
	Sage

