Hilbert Basis Theorem
& Ideal-Variety Correspondence

MAA434: Algebraic Geometry — Lecture: March 09, 2020
Presenters: Christopher & Lily
Scribe: Huan Q. Bui

Here is a summary of what we did in class on Mar 09, 2020. Christopher
and Lily covered sections 3.3 to 3.6 in Reid’s. We discussed the Hilbert Basis
Theorem, followed by some corollaries and examples, and the correspon-
dences V and Z. We ended the lecture with some tidbits by Fernando on the
Hilbert basis theorem and, of course, the midterm exam (good luck ®).

1 Review
Last time, we introduced the concept of Noetherian rings. Today, we will be
using the following (equivalent) useful facts about Noetherian rings. Let a

Noetherian ring 4 be given, then

e vz'd A, 7 is finitely generated (or f.g., for short).
* EBvery ascending chain

Tc--cl,c...

. idl . .
with Z; A eventually terminates, with Zy = Zy41 = ... for some
N e N. This is called the ascending chain condition, or a.c.c..

2 Hilbert Basis Theorem

Theorem 2.1.

Ring A is Noetherian = A[X] is Noetherian.

Proof. Let a Noetherian ring A be given. To show: every J i A[X], where
A[X] is the ring of polynomials whose coefficients are elements of A, is f.g..



Let any J ! A[X] be given. We consider J,, the subset of A that contains
the coefficients of leading terms of degree-n polynomials in J:

]n:{aeA|E|f:aX”+bn_1X”‘l+---+b06j}.

idl
Now, J,, ¢ A, because:

* Because J is anideal, forany f; =aX" +... and f, =bX" +--- € J, we
have fi+ fo = (a+b)X" +--- ¢ J. And so we see that with a,b € J,,
(a+b)e], = J,isclosed under (+).

* Consider 2 € A and j € J,. We can see that aj is going to be the
coefficient for a leading term for some degree-n polynomial in 7. So,
aj € ], = ], absorbs products.

We can also see that ], c J,11, because for any degree-n polynomial f € J
with leading coefficient j € J,,, the degree-(n + 1) polynomial X f also has
leading coefficient j € J,41.

idl
So, because A is Noetherian, [, '€ A, and Jn € Jus1, a.c.c. tells us that there is
some N € N for which

IJN=INs1=-..

The goal now is to build a set of generators for 7. If we can somehow show

there are finitely many generators for J then we’re done. Here’s how: each
idl .

J; 'S Ais f.g., foreachi < N, we let (a;1,... ,am(i)) generate J;. For each ay,

welet fir = a; X! +--- € J be an element of degree i and leading coefficient a;;.

Intuitively, the set
{feli=0,1,...,N;k=1,...,m(i)}

generates J. We will see this explicitly: consider some g € J withdegg =7,
then the leading term of ¢ is bX” with b € J,. Now, |, is an ideal f.g. by the
a;r’s, so I can write b as a combination of these:

b= Z CVlkaylk
k

with y' = y if y < N, otherwise y’ = N. (This has to do with the fact that
the ascending chain terminates at [y - we won’t worry about this too much.)
From here, we consider this polynomial in 7:

g1=9- X(V_y,) Z Cy’kfy’k'
k



By how we define )’, there is no negative degree in g1. Because the leading
coefficient of each f,; is a,/; (by construction), we can readily check that the
term of degree y is zero. And so,

deg g1 <deg g - 1.

By induction, we will eventually get to some g, = 0 This means that we
will eventually be able to write ¢ as a combination of the f;;’s. So, J is f.g.
= A[X] is Noetherian.

O

idl
Here’s a little “summary” of the proof: We want to show any 7 '€ A is
f.g., so we look at

igl 7 collect leading coefs... idl

A[X] a= comboof a;i, ..., 4,y €Ji € A

idl
From here, look at ¢ € 7 with deg ¢ = y. Since J,, 'C A, the leading coefficient
can be written as ¥ ¢,xa,« where the a,/s generate J,. So, with each f,
having a, as leading coef.,

deg|g - > cpnayn X’ f| <y -1.
k

By induction, we eventually get to the zero polynomial, which implies we
can write ¢ as a combination of the f;;’s. This says JJ is f.g., and so A[X] is
Noetherian.



2.1 Some consequences

Any field k is Noetherian (L.t.r.). So, we have that
k is a field == k[X1] is Noetherian.

The proof is a direct application of Hilbert Basis Theorem.

But why stop at a single variable X; when we have a new Noetherian
ring, namely k[X;]? Applying Hilbert’s Basis Theorem again to k[X;] we
have that k[X1][X2] = k[ X1, X2] is also Noetherian. Here k[X;][X3] is the
ring of polynomials in X, whose coefficients are (polynomial) elements in
k[X1]. It makes senses (and is true!) that k[ X1][Xz] = k[ X7, X2]-

Of course we can do this finitely many times to get a more general result:
k is a field = k[Xj,..., X;] is Noetherian.

Reid generalizes this a bit more in a corollary:

k is a field = a finitely generated k — algebra is Noetherian

A finitely generated k-algebrais a ring of the form A = k[ay, ..., a, ], which
is generated (as a ring) by k and a4, ..., a,. Every such ring is isomorphic to
a quotient of the polynomial ring, i.e.,

Azk[Xy, ..., Xu]/L.

From our discussion above we already know that k[Xj, ..., X, ] is Noethe-
rian, and so k[ X3, ..., X, ]/I is also Noetherian by Proposition 3.2(i), which
I presented in the previous lecture ©.



3 The correspondence V

Definition 3.1. Let k be a field and A = k[Xj, ..., X,,]. Given a polynomial
f(X1,...,Xy) e Aand apoint P = (ay,...,a,) € A}l = k" (think of this as just
a k-tuple), we define the correspondence:

{] il A} Y, {subsets X ¢ A7}
by
J->V(J)={PeAl|f(P)=0Vfe]},

where the notation f(P) means “evaluating f at P.”
Definition 3.2. When V(I) = X c A} for some I, then X is an algebraic set.

Proposition-Definition 3.3. The correspondence V satisfies the following
formal properties:

1L V({0})=A}; V(A =2
2. Ic] = V()>V()). Or, V “reverses inclusion.”
3. V(I1inlp) =V(I1) uV(Iz). Or, to make a bigger V(I), intersect the I’s!

4.V (Taealr) = Naea V(I,).
Proof:

1. By the definition of V(]), we see that if | = {0} then V(]) is the set of
points P at which f(P) =0forall f € J. But | = {0}, so f is identically
zero. So, any P € A7 is in V(0). When ] is all of A, no point P € A}
makes every f € | vanish because there are constant functions in J.

2. If I c ] then if a point P € A7 is such that f(P) = 0V f € | then
f(P)=0V fel. SoV(])cV(I).

3. e (o) Evidently, V(I) c V(In]) because I n ] c I. Similarly, V(]) c
V(In]) by (2). So, V(I)uV(]) cV(In]).

® (c) Assume P e V(In]). If P ¢ V(I) uV(]) then there is some
f el and g € | such that f(P) # 0 and g(P) # 0. But this means
f og(P)#0, which implies P ¢ V(I n]). This is a contradiction.

With these items, we're done with the proof.

5



4. o (c) First, let us write

=Y n-fi- %/

AeA AeA

f/\EI/\}-

£ is an ideal (1.t.r.). For any point P € V(2), f(P) =0V € £, by
definition. In particular, if we look at f) where £ 5 f = f; € I,
then f,(P) = 0. This holds for all f; € I, and for all A, so the point
P belongs to every V(I,), i.e., V(£) c Niea V(I2)-

* (o) Suppose P € Ny, V(Iy), thenforany A € A, f(P) =0V f €I,.
This tells us that any f € £ (which is some combination of the f;’s)
vanishes at P as well. Thismeans P € V(£). So, Nxea V(I1) c V().

With these items, we're done with the proof.

O
Side note: Reid briefly mentions that from these propositions-definitions
the algebraic subsets of A}l form the closed sets of a topology on A} called the
Zariski topology. I'm just mentioning the name here, just in case it shows up
in a different context. Reid says the Zariski topology “might cause trouble
to some students”, adding: “[...]since it is only being used as a language,
and has almost no context, the difficulty is likely to be psychological rather
than technical.”



4 The correspondence 7

Definition 4.1. As a kind of inverse to V there is a correspondence

{] ! A} z {subsets X ¢ A7}

defined by

I(X)={f e A| f(P)=0VP e X} « X.

Basic

idea: 7 takes a subset X to the ideal of functions vanishing on it.

Proposition 3.2.

1.
2.
3.
4.
Proof:
1.

Z(A})=1{0}; I(w)=A
XcY = Z(X) o Z(Y). (“reverses inclusion”)
Forany X c A}, X c V(Z(X)), with equality <= X is an algebraic set.

For J c A, ] cZ(V(])), this inclusion may well be strict.

By definition, Z(A}) is the set of polynomials in A that vanish at all
points P € A?. This holds only if f = 0,i.e.,, Z(A}) = {0}. I'll get back to
the second sub-item after proving item (4).

. This one is similar to second item of Proposition 3.3. Suppose X c Y c

AJ. Then any f € A such that f(P) =0, VP € Y necessarily vanishes at
all P € X as well. This means f € Z(X). So Z(Y) c Z(X).

(tautology + condition for equality) If Z(X) is the set of f € A such that
f(P) =0VP € X, then evidently VP € X, f(P) =0, i.e.,, X € V(Z(X)).
Therefore, X c V(Z(X)). If X = V(Z(X)) then X has the form V(ideal).
So X is an algebraic set, by definition 3.2. If X = V(Iy) is an algebraic
set, then Z(X) contains at least Iy, and so V(Z(X)) c V(Ip) = X (by (2)).
So, equality occurs exactly when X is an algebraic subset of A}.

(tautology) Staying with the definition: Z(V(])) is the set of functions
vanishing atall points of V(] ), and so for any point of V(]), any function
of ] vanishes atit. So | c Z(V(])).



5. As promised, we look at the statement Z(@) = A of item (1) again. By
replacing | in item (4) by A, we get A c Z(V(A)). ButZ(...) c Aand
V(A) = @ (by Proposition 3.3(1)), so we have Z(2) = A.

a

Example 3.3. Here is an Fernando’s example to illustrate the inclusion in
item (3). Let X = {(x,0)|x >0}, i.e. X is the positive x-axis. Then Z(X) is
the ideal generated by y of functions that vanish on X. But of course any
function f e Z(X) will also vanish on the negative x-axis, and so V(Z(X)) is
the entire x-axis. We see that X c V(Z(X)).

O
The following examples illustrate how the inclusion in (3) may be strict.

Example 3.4. This is Example 1 from Reid’s. Suppose k is not algebraically
closed, and let f € k[X] be a nonconstant polynomial not having root in k
(because k is not algebraically closed). The ideal | = (f) c k[X]. Since 1 ¢ |
(because any f € | is nonconstant), we have that | # k[ X]. But

V()= {P A f(P) =0V f e ]} <o,

(because any f has no root in k). So, Z(V(])) = k[ X], by item (1). Hence we
see that | ¢ Z(V(X)).

m
Example 3.5. For any f € k[Xj,...,X,]and a >2, f4(P)=0 < f(P)=0
(l.t.r). Therefore, V((f*)) = V({f)). Further, f € V(Z({f“))), but usually

fé(f?). So, we see that (f) ¢ V(Z((f?))), usually.
m



5 Addendum: “Hilbert Basis Theorem” origins

This article discusses the theory of invariants, from which the Hilbert Basis
Theorem originated. The Hilbert Basis Theorem generalizes Paul Gordan’s
results on invariants. Gordan was the person who famously said, about
Hilbert’s proof of the theorem, “This is not mathematics; this is theology!”



https://www.encyclopediaofmath.org/index.php/Invariants,_theory_of
https://wayback.archive-it.org/all/20090116011956/http://people.math.jussieu.fr/~harris/theology.pdf
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