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MA434 Class Notes for 24 February 2020: Linear Systems

§ 2.4

We began class with section 2.4, discussing the vector space of forms (homogeneous polynomials)
and looking for its dimension.

Joshua defined Sd as the set of forms {F : F is a form of degree d in (X, Y, Z)}. Given some form
F ∈ Sd, we can write F =

∑
aijkX

iY iZk, where the sum is taken over i, j, k with i + j + k = d,
with all i, j, k ≥ 0, and with coefficients aijk in some field k.

Now we call Sd a k-vector space with the field k, and it has a basis v1 · v2 · · · vd where
vi = X or Y or Z. To find the dimension of the vector space, we take v1 · v2 · · · vd and multiply it
by XY Z. We see that v1 · v2 · · · vdXY Z now has d + 3 variables, some X, some Y , and some Z.
Essentially trying to find the number of monomials of this degree, which is why we multiplied by
XY Z. Taking v1 · v2 · · · vdXY Z, Joshua suggests we consider the basis à la stars and bars:

Figure 1. Partitions of d + 3 into three parts.

In this format, with d + 3 being multiplied by the choice of either X, Y or Z, it’s easy for us to
see that the d + 3 − 1 = d + 2 bases can be partitioned in two places, meaning that there are(
d+2
1

)
possibilities. Reid alternatively offers a triangular demonstration of how the same number

of bases can be arrived at. However we go about it, we find the dimension of the vector space dim
Sd =

(
d+2
2

)
.

Now, taking Sd(P1, P2, ..., Pn) = {F ∈ Sd : F (Pi) = 0 for i = 1, 2, ..., n}, which Reid notes is a
subset of Sd, Joshua showed that dim Sd(P1, P2, ..., Pn) ≥ dim Sd − n =

(
d+2
2

)
− n.

§ 2.5

Next we moved on to section 2.5, where Ethan laid out our first lemma: given some infinite field
k and forms F ∈ Sd, if there is a line L in the projective space P2

k such that F ≡ 0 on L, then
given the equation H of the line L, F = H ·F ′d−1; this can be visually represented by a proverbial
transformation of the X-axis to the line L, as seen in Figure 2.

For the proof, we will first call H = X ′, and F (X ′, Y ′, Z ′) We then consider the equation
F = X ′(??)+G(Y ′, Z ′), and look to see what H = X ′ is multiplied by in the equation of F . Ethan
pointed out that the unknown factor with X ′ must be of degree d − 1, and so we proceeded to
write the equation as F = X ′F ′d−1+G(Y ′, Z ′). Ethan showed us that knowing F = X ′F ′d−1 = 0 for
0, Y ′, Z ′ on L, we see that as G has degree d and as L has infinitely many points, then G(Y ′, Z ′) = 0
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Figure 2. Visualizing the graphically representative transformation to a new X-
axis on the line L with equation H.

and F = HF ′d−1. This is to say that the line H is contained inside this degree d curve and that
the line divides the curve; the form “vanished” over the line.

Moving on from the form “vanishing” over the line to the form “vanishing” over a conic, we
continue on to the second part of lemma 2.5. Again, we have the infinite field k and the form
F ∈ Sd, with the non-degenerate conic C ⊂ P2

k. The conic C defined by the equation C : Q = 0.

F must be of the form F = Q(??) + Y (??) + (??), and ideally we want it of the form F = QF ′d−2,
so we’ll write it as F = QF ′d−2 + Y A(X,Z) + B(X,Z). We know that we can change coordinates
and write Q = XZ − Y 2 and Y 2 = XZ −Q. We then parameterize the conic C : [U2 : UV : V 2]
with X = U2, Y = UV,Z = V 2. When F ≡ 0, we substitute, and we know by definition that
UV A(U2, V 2) +B(U2, V 2) = 0, meaning UV A(U2, V 2) = −B(U2, V 2), and because the powers of
U and V don’t match up, this must be the zero polynomial, making U, V = 0 and that the form
F factors and that F can be written F = QF ′d−2.

Note that this proof only worked because we have an explicit parameterization of the conic, which
we learned from section 1.7.

Ethan next presented a corollary to this lemma:

L defined as the line L : (H = 0), L a line in P2
k. Given points P1, ..., Pa ∈ L and Pa+1, ..., Pn /∈ L,

with a > d, then Sd(P1, ..., Pa) = H ·Dd−1(Pa+1, ..., Pn).

We already proved that if the number of intersections is less than or equal to 2d. Knowing that
F is a form of degree D and that a > d implies that ∀[X : Y : Z] where H[X : Y : Z] = 0,
then F [X : Y : Z] = 0. We know by the first lemma that we can factor out H from the
form, so F = H · F ′d−1. We know H = 0 on the first part, for F ′d−1 = 0 on {da+1, ..., dn}, so
F ′d−1 ∈ Sd−1(Pa+1, ..., Pn).

The second part of the corollary takes the conic C defined by the quadratic C : Q ≡ 0, and we let
a > 2d. So we know Sd(P1, ..., Pa) = Q ·Sd−2(Pa+1, ..., Pn), and the proof follows identically as the
previous one with the line and was not produced in class (it is not in the book either).

For example, take the following line in figure 3: four of the points are on the line, so we could say
Q = H · S1(P5). Essentially, we strive to show that the maximum number of points a conic can
share with a curve of degree d is 2d.
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Figure 3. Showing the first four points P1, ..., P4 on a line L : H = 0, but the fifth
point P5 not on L because 5 > 2 · 2.

§ 2.6

Theorem: Let k be an infinite field and let the distinct points P1, ..., P8 ∈ P2
k. If no four points

are collinear, and no seven points are conconic (lying in the same nondegenerate conic), then dim
S3(P1, ..., P8) = 2. We’ll prove in this section that dim S3(P1, ..., P8) ≤ 2, and in 2.7 we will prove
that the dimension is greater than or equal to two, thus showing equality.

There are three cases that we need to prove for this inequality:

Case 1: No three points are collinear, no six points are conconic.

We suppose, for the sake of contradiction, that dimS3(P1, ..., P8) ≥ 3 and let P9, P10 be distinct
points on the line between P1 and P2, P1P2. Then we see that the dimension
dim S3(P1, ..., P10) ≥ dim S3(P1, ..., P8) − 2 ≥ 1. Then there exists some form F 6= 0 where
F ∈ S3(P1, ..., P10), which is true because the dimension is at least one.

By section 2.5, we know there are four points on this line, and because four is more than the
degree of the forms (being three), we again know that we can write the form F as the product
F = H ·Q, where Q ∈ S2(P3, ..., P8).

If Q is nondegenerate, then the points P3, ..., P8 are conconic, and thus contradict our assumption
of no six points being conconic.  

If Q is degenerate, then three points of P3, ..., P8 must be collinear, thus contradicting our assump-
tions of no three points collinear.  

Thus, for both nondegenerate and degenerate conics, we have contradictions when
dim S3(P1, ..., P8) ≥ 3, so we conclude that for this case, dim S3(P1, ..., P8) ≤ 2.

Case 2: Three points are collinear.

Let points P1, P2, P3 be in L, and take a point P9 on L, distinct from the previous eight points.
By section 2.5, we know that S3(P1, ..., P9) = H · S2(P4, ..., P8), and since no four points are
collinear, then dim S2(P4, ..., P8) = 1; we base this conclusion in part off of our conclusions from
section 1.11, as there are five points, which can exist in a one dimensional space. We see that
dim S3(P1, ..., P9) = 1, we remove the point P9 and get at most one dimension back, so then dim
S3(P1, ..., P8) ≤ 2.
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Case 3: Six points are conconic.

We begin by letting the six points (P1, ..., P6) be on the conic C. We take the point P9 on C,
distinct from the previous eight points. We know the degree of the conic C is 3, and so 7 > 2d = 6;
then from our conclusion in section 2.5, we see that S3(P1, ..., P9) = QS1(P7, P8). As we all know
that the number of unique lines through two points is one, Joshua pointed out that S3(P1, ..., P9)
has dimension 1, and again we remove the point P9 and gain at most one dimension, to find that
dim S3(P1, ..., P8) ≤ 2.

Thus we can conclude that dim S3(P1, ..., P8) ≤ 2.

At the beginning of next class, we will walk through section 2.7 to show the other inequality and
conclude equality.


