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1 Problem 1.6

Let k be a field with at least 4 elements, and C : (XZ = Y?) prove that if
Q(X,Y, Z) is a quadratic form which vanishes on C then Q = A\(XZ — Y?)

1.1 Proof

Let Q(X,Y, Z) be a quadratic such that it vanishes on C': (XZ = Y?). We can
write out the equation for Q = a X2 +2bXY +cY?24+2dXZ +2eY Z + fZ2. We
can now move the 2dX Z with part of cY? to achieve,

Q=2d(XZ-Y?) +aX?*+20XY + (c — 2d)Y? 4+ 2eY Z + fZ*
Since C: (XZ =Y?),Q[0:0:1]=0= f, so f =0. We can now rewrite Q,
Q=2d(XZ Y% +aX?+20XY + (c—2d)Y? +2eY Z
we can use the points [1 : y : y?] € C. Since @ vanishes over C, Q[1 : y : y?] =
0= a+ 2by + (c — 2d)y? + 2ey3. We are left with a cubic, but since k is a field

with at least 4 elements, there are at least 4 zeroes of our cubic. The only way
for that to happen is for all of the coefficients to be 0. We can now write,

Q=2dXZ-Y*+0x X2 +20XY +0xY? +0xYZ =2d(XZ —Y?)

Thus, Q = \(XZ = Y?) where \ = 2d.



2 Problem 1.7

In R3, consider the two planes A : (Z = 1) and B : (X = 1); a line through 0
meeting A in (z,y,1) meets B in (1, £, %) Consider the map ¢ : A — B defined
by (z,y) — (y' = £,2/ = 1); what is the image under ¢ of

Tz

2.1 thelinear=y+0

The line ax = y+b is a pencil of parallel lines each with slope a. We will start by
looking at where ¢ sends a line. Our mapping sends (z,y) — (y' = £,2/ = 1).
We can solve our equation of a line for £ by subtracting b and dividing by z,
! = a—f—% So, ¢ :ax =y+b+— (1l,a— %7%) (1,a—£,%) is a line with
the equation y = a — bz. Since b can vary, our group of parallel lines in A are
now a pencil of lines on the x = 1 plane with varying slopes that all go through
(1,a,0).

2.2 circles (z — 1)? 4+ y* = ¢ for variable c

We break this into 3 cases on c.
Case ¢ > 1:

If ¢ > 1, ¢ sends our circle equation to (1, i%w, %) We will let o =

c—1> 0, so we have (1,4+,/5% + % -1, %) We can now write an equation,

y = +Vaz2 +22+1, so y> — az? — 22 +1 = 0. This is the equation of a
hyperbola since « is positive.

Case c=1:

If ¢ = 1, ¢ sends our circle equation to (1, ic%w, %) = (1, il%(w_l)g, 1) =
(1,@,%) = (1,+y/2-1,1). So, y = £/2z—1 giving us a parabola
y? —22+1=0.

Case ¢ < 1:

If ¢ < 1, ¢ sends our circle equation to (1, i%w, %) We will let o =

—14¢> 0, so we have (1, i,/—;% + % —1, %) We can now write an equation,

y=+vV—-az2+22+1, so y?> + az? — 2z +1 = 0. This is the equation of an
ellipse since « is positive.



3 Problem 1.8

3.1 Let P, P, P;, P, € P? with no 3 collinear. Prove that
there is a unique coordinate system in which the 4
points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1,1,1).

We want to define a linear transformation M such that:

(1,0,0) —» P,

(0,1,0) — P»

(07 O, 1) — P3

(1,1,1) = Py Since Py, Py, P3, Py € P? we are allowed to scale them so that
P, + P, + P; = Py No 3 points are collinear, so P, P», P3 span R which means
there is some «, 8, with aP, + 8P, + vP3; = P4. So we want M to map each
standard unit to its scaled version in P2.

M(1,0,0) = aPy, M(0,1,0) = 8P, M(0,0,1) = vPs

This will force M(1,1,1) = P;. Thus our transformation to the coordinate
system is simply M 1.

3.2 Find all conics passing through P,...P; , where P; =
(x,y, z) is some other point

Let C be our conic, C : aX? +2bXY +cY? +2dXZ +2eY Z + fZ% = 0. Since
Py, Py, P3 are on the curve, the points (1,0, 0), (0,1,0), (0,0, 1) are zeroes on the
conic, this means a,c, f = 0. Now we have 2bXY + 2dX7Z +2eYZ = 0. Py
is also on the curve, so (1,1,1) is also a zero, thus b+ d 4+ e = 0. Using Ps,
bxy + dxy + eyz = 0. We now have 2 equations for 3 variables, which means we
have one solution in P2.

3.3 Corollary 1.10

If P,...Ps € P? are distinct points such that no 4 are collinear, then there exists
at most one conic through P;...Ps

We have shown that there is a unique way to move our coordinates to our new
space and also that each time we add a fifth point, we define a single conic.
Suppose there were 2 conics that go through all 5 points. This means there are
2 distinct ways to convert our coordinates, and the transformation would not
be unique, thus it is impossible for 2 conics to exist.



4 Problem 1.10 and 1.11

Two forms on an algebraically closed field share a root if and only if Sylvester’s
Determinant is 0.
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4.1 Generalized Proof

Let A be an n degree form and B be an m degree form. We will assume A and B
share a root (« : 7). There will be m variations of A (U*VYA with z +y =m)
and n variations of B (U*VYB with « 4+ y = n). Since A and B both have root
(o : ), any multiple of A and B will also have this root. Also, since all rows
of Sylvester’s Determinant are variations of A and B, all linear combinations
will also share the root. Let (6 : ¢) # (« : ). Consider K, the m + n degree
form whose only root is (6 : ¢). Since this form doesn’t share a root with A
and B, it is not possible to create a linear combination to create K. This means
the matrix form of Sylvester’s Determinant does not span m + n degree forms,
so it is not invertible and thus, the determinant is 0. We will now assume that
Sylvester’s Determinant is 0 and show that A and B must share a root. We
know that some non-trivial linear combination of the rows of the determinant
are 0.

a U™ PA+ U™ 2VA+ . +an, V™ P A—b U 'B— ... b,V InB =0
We can now do some factoring,
Ala U™ 4 aU™ 2V + 4 0 VY = B U 4+ b, VY =0

Notice that (a;U™ ! +aU™ 2V +... +a,, V™) is just a form of degree m — 1
and (byU™"1 + ... +b,V"1) is a form of degree n — 1. We now have At = Bt
where 7 is a form of degree m — 1 and 7 is a form of degree n — 1. Our forms
are in k[U, V], so we have unique factorization. Since degm < degB there is at
least one root of B that is not a root of = or has a higher multiplicity in B than
7. Since Am = BT, it must also be a root of A, thus A and B share a root.



