
ma434, Spring 2020 — Problem Day 2

The goal of this problem day is to review some Abstract Algebra and
also to establish some basic theorems we will need. All of the problems are
standard theorems you can find in your algebra textbook, but you should
try to give proofs yourself. We may not have time to do them all in class, of
course.

Throughout this problem set R will be a domain, i.e., a commutative ring
(with 1) with 0 �= 1 and no zero-divisors.

1. Suppose R is a domain. Let K denote the set of all symbols a
b

with a, b ∈ R,
b �= 0, subject to the rule that

a

b
=

c

d
⇐⇒ ad = bc.

Define addition and multiplication in K and check that the resulting object
is a field. K is called the field of fractions of R.

The examples we care the most about are these:

• If R = Z then K = Q.

• If R = k[x] is the ring of polynomials with coefficients in a field k, then
K = k(x) is the field of rational functions with coefficients in k.

2. Remember that an ideal in R is a subset I ⊂ R which contains 0, is closed
under addition, and “absorbs products,” that is, if r ∈ I and x ∈ R then
rx ∈ I. The easiest ideals are the principal ideals, which are just the set of
all multiples of some fixed element a ∈ R:

I = Ra = (a) = {ra | r ∈ R}.

The next-easiest ideals are the finitely-generated ones, where

I = {r1a1 + r2a2 + · · ·+ rkak | ri ∈ R}

for some finite set of a1, a2, . . . , an ∈ R.

Conservatives believe in unchosen obligations, whereas classical liberals think that the only source of obligation is choice. – Roger Scruton



Let k be a field and let R = k[x]. Show that any ideal I ⊂ R is principal.
(If I �= {0}, find an element a ∈ I of minimal degree and prove that I = Ra.)

A domain in which every ideal is principal is called a principal ideal
domain, or PID. The most important examples are Z and k[x] when k is a
field.

3. An ideal I ⊂ R is called maximal if I �= R and there are no ideals “be-
tween” I and R: if J is an ideal and I ⊂ J ⊂ R then either I = J or I = R.
Show that I is maximal if and only if R/I is a field.

4. An ideal I ⊂ R is called prime if ab ∈ I implies that either a ∈ I or b ∈ I.
Show that I is prime if and only if R/I is a domain.

5. Show that any maximal ideal is prime. Find an easy example of a prime
ideal that is not maximal.

6. In a domain R, we have the subgroup R× of all invertible elements of R;
these elements are often called the units of R.

When a, b ∈ R we say a divides b if there exists x ∈ R such that b = ax.
The units are exactly the divisors of 1. An element a ∈ R is called irreducible
if a = bc implies that either b or c is a unit.

An element b ∈ R is called prime if b|xy implies that eigher b|x or b|y.
As you know, in Z these being irreducible is equivalent to being prime, but
that is not true in a general domain. (Problem 11 gives an example.)

a. Show that if a|b and b|a then a = ub for some unit u ∈ R×.

b. Show that if a is irreducible and u is a unit then ua is irreducible.

c. Show that if a ∈ R is prime then it is irreducible.

d. Suppose you know that any irreducible element is prime. Prove that if
p1, p2, . . . , pr, q1, q2, . . . , qs are all irreducble in R and we have

p1p2 . . . pr = q1q2 . . . qs,

then r = s and after reordering pi = u1qi with ui ∈ R×.

As Chekhov commented, the only thing you can say about the sea is: “The sea is big”. – Vladimir Nabokov



7. Let R be a domain. We say R is Noetherian if any increasing chain of
ideals I1 ⊂ I2 ⊂ I3 ⊂ . . . is actually finite, i.e., there must be a k such that
Ik = Ik+1 = Ik+2 = . . . .

Show that R is Noetherian if and only if every ideal I ⊂ R is finitely
generated.

8. Suppose R is Noetherian, a ∈ R, a �= 0, a /∈ R×. Show that there
exist irreducibles π1, π2, . . . , πk such that a = π1π2 . . . πk. In other words,
factorizations exist.

9. Suppose R is a PID.

a. Show that R is Noetherian, and conclude that any non-unit, non-zero
element of R factors as a product of irreducibles.

b. Show that a is irreducible if and only if Ra is maximal.

c. Show that a is prime if and only if Ra is a prime ideal.

d. Conclude that any irreducible element of R is prime and therefore that
factorizations in R are unique up to unit factors and order.

A domain where factorizations exist and are unique is called a unique fac-
torization domain or UFD. So this problem can be summarized as PID =⇒
UFD.

10. Show that if R is a UFD then every irreducible element of R is prime.

11. Let R = Z[
√
−5] = {a+b

√
−5 | a, b ∈ Z}. R is known to be a Noetherian

domain. Let N : R −→ Z be the function N(a + b
√
−5) = a + 5b2. Since

this is just the square of the complex absolute value, we know that Nαβ) =
N(α)N(β). (Of course, it’s easy to check that by hand as well.)

a. Show that u is a unit in R if and only if N(u) = 1.

b. Show that no element of R has norm 3.

c. Show that no element of R has norm 7.

d. Show that 3, 7, (1+ 2
√
−5), and (1− 2

√
−5) are all irreducible in R.

If you want to know what God thinks of money, just look at the people he gave it to. – Dorothy Parker



e. Check that 3× 7 = (1+ 2
√
−5)(1− 2

√
−5).

f. What does that tell you?

12. (Gauss’s Lemma) Suppose R is a UFD and K is its field of fractions. We
want to compare factorizations in R[x] and in K[x]. Let f(x) ∈ R[x] and
suppose we have g(x), h(x) ∈ K[x] such that f(x) = g(x)h(x). Show that
there exists a ∈ K such that g̃(x) = ag(x) ∈ R[x], h̃(x) = 1

a
h(x) ∈ R[x], and

so f(x) = g̃(x)h̃(x) is a factorization in R[x].
(This one is hard. For any f(x) ∈ R[x] we can factor out c ∈ R so that

f(x) = cf1(x) and the coefficients of f1(x) have no irreducible factors in
common. We say f1(x) is primitive. The key is to show that the product of
two primitive polynomials is primitive. It might be easier to do this for Z

and Q first and then try to generalize.)

13. Suppose R is a UFD. Prove that R[x] is a UFD.

14. Let k be a field. Show that the ring of polynomials R = k[x1, x2, . . . , xn]
is a UFD.

15. Suppose f, g ∈ k[x, y] are polynomials in two variables with coefficients
in a field k. Suppose f(x, y) is irreducible and does not divide g(x, y). Show
that there are at most finitely many solutions to f(x, y) = g(x, y) = 0.

I’ve written several children’s books . . . Not on purpose. – Steven Wright


