
Math 165 Homework 2 Due: February 27th, 2025

Math 165: Homework 2

Please complete the following exercises below and write up your solutions consistent with the directions in the
syllabus. Your solutions are due on Thursday, February 27th at 10:00AM in the appropriate box outside my office
door. If you get stuck on any part of the homework, please come and see me. More importantly, have fun!

Given the length of the following exercise, it will be worth double a normal exercise. So, this homework has
5 exercises in total that you should turn in. Still, I have included a sixth exercise that can be done for extra
credit. The exercise is one of my favorite applications involving integration, improper integration, the monotone
convergence theorem. I promise it is fun!

Exercise 1. In class, we used the fact that
exey = ex+y

We shall give a proof through the following steps. Please do all of them and, as usual, justify your reasoning.

1. We know that, for any number z, the following series converges absolutely and defines the number ez:

ez =

∞∑
k=0

zk

k!
= lim

n→∞

n∑
k=0

zk

k!
.

In fact, you can take for granted that all of this works when z is complex. It’s amazing! In particular, if x
and y are any two complex numbers,

ex+y = lim
n→∞

n∑
k=0

(x+ y)k

k!

Use the binomial theorem to write the approximants in the form

n∑
k=0

(x+ y)k

k!
=

n∑
k=0

k∑
j=0

1

j!

1

(k − j)!
xjyk−j

for each n ∈ N.

2. Now, I want you to switch the order of summation to show that

n∑
k=0

k∑
j=0

1

j!

1

(k − j)!
xjyk−j =

n∑
j=0

n∑
k=j

1

j!

1

(k − j)!
xjyk−j

for each n ∈ N. Note: This is not completely obvious. Explain why the bounds on these double sums are as I
claimed.

3. Using what you found above, you can change the index of the inner summation (by setting l = k − j) and
simplify as much as possible to show that, for n ∈ N+,

n∑
k=0

(x+ y)k

k!
=

n∑
j=0

xj

j!

n−j∑
l=0

yl

l!

4. To show that ex+y = exey, we must now take a limit as n → ∞. Naively, it seems that we can just set n = ∞
and we’d be done. However, this isn’t so straightforward because the inner summation depends on j (in the
upper summation index) and this makes things delicate enough that we have to worry a little bit. As it turns
out, there are several ways to compute this limit and get what we want. Here, I’ll show you a very powerful
way which makes use of a famous theorem called Lebesgue’s dominated convergence theorem or the LDCT.
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While you won’t see a proof of this theorem until MA439, it’s actually quite straightforward to prove and so
we’ll take it for granted. To this end, write

n∑
j=0

xj

j!

n−j∑
l=0

yl

l!
=

∞∑
j=0

fn(j)

where

fn(j) =
xj

j!
χ[0,n](j)

n−j∑
l=0

yl

l!

and χ[0,n] is the characteristic function of the set [0, n] which is 1 exactly when j = 0, 1, 2, . . . , n and 0 for
j > n. Show that, for each j = 0, 1, . . . ,

lim
n→∞

fn(j) =
xj

j!
lim
n→∞

χ[0,n](j)

(n−j)∑
l=0

yl

l!
=

xj

j!
ey =: f(j).

Show also that

|fn(j)| ≤
|x|j

j!
e|y| := g(j)

for every n.

5. Now, Lebesgue’s dominated convergence theorem says that:

If

∞∑
j=0

g(j) < ∞, then lim
n→∞

∞∑
j=0

fn(j) =

∞∑
j=0

lim
n→∞

fn(j) =

∞∑
j=0

f(j).

Please verify that
∑∞

j=0 g(j) < ∞.

6. Since the hypothesis of the LDCT is met, use the theorem and put everything together to conclude that

ex+y = exey.

For the remainder of the homework, you will work through some basic calculus for complex functions of a real
variable. As we discussed in class, this calculus is only ϵ more difficult than what we have already done. I really see
the remainder of this homework as simply an opportunity to get you comfortable with complex-valued functions.
In what follows, we shall take I to be an interval of the form [a, b], (a, b), [a, b) or (a, b]. A complex-valued function
on I is a function f : I → C of the form

f(x) = u(x) + iv(x)

where u and v are real-valued functions on I. We call u and v the real and imaginary parts of f , respectively, and
sometimes write u = Re(f) and v = Im(f). We say that a complex-valued function f is real-valued if v = Im(f)
is identically 0 on I. Below, we extend some of the calculus we’ve done so far in honors calculus to this complex-
valued setting. You should verify, at all stages, that our theory here recaptures the real-valued theory when the
complex-valued functions have everywhere vanishing imaginary parts.

1 Differential Calculus

We shall focus mostly on those complex-valued functions f : I → C which are continuous, i.e., complex-valued
functions f = u + iv whose real an imaginary parts u and v are continuous on the interval I. The set of such
functions is denoted by C0(I) and explicitly defined by

C0(I) = {f : I → C : u = Re(f) and v = Im(f) are continuous real-valued functions on I}
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A function f = u+ iv is said to be differentiable on I provided that

u′(x) = lim
h→0

u(x+ h)− u(x)

h
and v′(x) = lim

h→0

v(x+ h)− v(x)

h

exist at each1 x ∈ I. If we know that f is differentiable on I, we define its derivative f ′ by

df

dx
= f ′(x) = u′(x) + iv′(x)

for x ∈ [0, 1]. When it happens that f ′ it itself a continuous function on I, i.e., f ′ ∈ C0(I), we say that f is
continuously differentiable2 on I and we denote the set of all such functions by C1(I), i.e.,

C1(I) = {f ∈ C0(I) : f is differentiable on I and f ′ ∈ C0(I)}.

Continuing inductively, for each k ≥ 2, we say that f is k-times differentiable on I provided that the (k-1)th
derivative of f is itself differentiable on I and we write

dkf

dxk
= f (k)(x) =

d

dx
f (k−1)(x) =

dk

dxk
u(x) +

dk

dxk
v(x)

for x ∈ I. The set of k-times continuously differentiable functions is defined by

Ck(I) = {f ∈ Ck−1(I) : f (k) exists and is a member of C0(I)}.

With these sets at hand, we say that a function f is smooth or infinitely differentiable on I if it belongs to Ck(I)
for all k, i.e.,

f ∈ C∞(I) :=

∞⋂
k=0

Ck(I).

We have the following proposition:

Proposition A. Let f and g be complex-valued functions on I and let α and β be complex numbers.

1. If f and g are differentiable on I, then so are αf + βg, fg and f/g (provided that g ̸= 0 on I) and we have
the formulas

(a) d
dx (αf + βg)(x) = αf ′(x) + βg′(x) for x ∈ I.

(b) d
dx (fg)(x) = f ′(x)g(x) + f(x)g′(x) for x ∈ I.

(c) d
dx (f/g)(x) = (f ′(x)g(x)− f(x)g′(x))/g(x)2 for x ∈ I.

2. For any k = 0, 1, 2 . . .∞, if f, g ∈ Ck(I), then αf + βg ∈ Ck(I). In particular, this guarantees that each
Ck(I) is a subspace of the vector space of complex-valued functions on I and is therefore a vector space in its
own right.

Though the above proposition might seem obvious (at least the first item) and it does follow from the results
of single-variable (real-valued) calculus, you should think about what is meant by all of the algebraic operations
above. As a good check, here is a basic exercise:

Exercise 2. Writing f(x) = u(x) + iv(x) and α = a+ ib. Verify that

d

dx
(αf)(x) = αf ′(x)

(whenever f is differentiable) by expanding both sides using complex multiplication and applying the definition of
the derivative of a complex-valued function given above.

1If either endpoint a or b is included in I ( e.g, I = [a, b]), these limits are taken to be one-sided limits when necessary (either h > 0
at x = a or h < 0 at x = b).

2Which is, admittedly, a terrible name.
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Exercise 3 (The complex exponential function). In class, we proved (while making use of the results of Exercise
1) that

eix = cos(x) + i sin(x) (1)

whenever x ∈ R. In this way, x 7→ eix is a complex-valued function on I = R.

1. While we know from Exercise 1 that ei(x+y) = eix+iy = eixeiy, I want you to use the right hand side of (1) to
confirm this. In other words, use known trigonometric identities and the algebra of complex numbers to show
that

ei(x+y) = cos(x+ y) + i sin(x+ y) = (cos(x) + i sin(x))(cos(y) + i sin(y)) = eixeiy

whenever x, y ∈ R.

2. Use the above to verify the so-called identity of De Moivre:

(cos(x) + i sin(x))n = cos(nx) + i sin(nx)

for x ∈ R. This identity is key to understanding the nth roots of unity.

3. Upon recalling that, for a non-zero complex number z = a + ib, w = 1/z is the unique complex number for
which wz = zw = 1 + 0i, show that

e−ix =
1

eix

for each x ∈ R (note, by e−ix, I mean ei(−x)).

4. Show that eix is differentiable on R and
d

dx
eix = ieix

and conclude that eix ∈ C1(R). You can use either the definition via power series (and that we can differentiate
power series, something I stated but haven’t yet proved) or you can use your knowledge of trigonometric
derivatives.

5. Using mathematical induction, show that eix is k-times differentiable on R with

dk

dxk
eix = (i)keix

for every k = 0, 1, 2, . . . . Conclude that f ∈ Ck(R) for every k and so x 7→ eix is smooth.

2 Integral Calculus

In this subsection, we focus on the case in which I = [a, b] where a < b are both finite.

Definition B. Let f : I → R be given by f = u + iv. If u = Re(f) and v = Im(f) are Riemann/Darboux
integrable, i.e., u, v ∈ R(I), we say that f is Riemann/Darboux integrable on I, write f ∈ R(I;C) and define the
integral of f on I to be the complex number∫ b

a

f =

∫ b

a

f(x) dx =

∫ b

a

u(x) dx+ i

∫ b

a

v(x) dx.

Proposition C (The integral is linear). Given an interval I, let f, g ∈ R(I;C and α and β be complex numbers.
Then αf + βg ∈ R(I;C) and ∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.
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Exercise 4. As with the analogous proposition for differentiation, the proposition above seems obvious. Still, to
get a feel for what it is saying, please prove the following special case (using only results of single-variable calculus):
For f = u+ iv ∈ R(I;C) and α = a+ ib ∈ C, show that αf ∈ R(I;C) and∫ b

a

αf = α

∫ b

a

f.

Exercise 5 (The fundamental theorem of calculus and integration by parts). Fix I = [a, b]. For a function
f = u+ iv ∈ C0(I), we say that F = U + iV ∈ C1(I) is an antiderivative for f on I if F ′ = f on I.

1. If F is an antiderivative of f on I, use the single-variable calculus version of the fundamental theorem of
calculus to show that ∫

I

f = F (x)
∣∣b
a
= F (b)− F (a).

2. Use the above FTC for complex-valued function to prove the following complex-valued intergration by parts
formula: For any f, g ∈ C1(I), ∫

f ′g dx = f(x)g(x)
∣∣∣b
a
−
∫
I

fg′.

3 A fun optional exercise putting together ideas of convergence and
improper Riemann integration

Exercise 6. Let f be continuous, increasing and concave down on the interval [1,∞) as shown in Figure 1.

x
nn-11 2 3

y

y=f(x)

Figure 1: A continuous function f which is increasing and concave down.

For each natural number n, we let An be the total area of the regions shown in blue in the figure. This area An

is formed by taking the area under the graph of f and subtracting the area of the trapezoids (drawn in the figure)
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beneath the graph from 1 to n. For example, noting that the area of a trapezoid is the base times average of the
side lengths (heights), we have

A3 =

∫ 3

1

f(x) dx− 1 · f(1) + f(2)

2
− 1 · f(2) + f(3)

2

=

∫ 2

1

f(x) dx− f(1) + f(2)

2
+

∫ 3

2

f(x) dx− f(2) + f(3)

2

=

2∑
k=1

(∫ k+1

k

f(x) dx− f(k) + f(k + 1)

2

)
.

1. State the general formula for the sequence An.

2. Our assumption that f is concave down (look at Figure 1) means that the secant line between any two points
on the graph of f lies (except for its endpoints) entirely beneath the graph of f . As a consequence, for each
k = 1, 2, . . . , n,

(1− t)f(k) + tf(k + 1) < f(t+ k) (2)

for all 0 < t < 1. Use properties of the integral (monotonicity of the integral3) to show that, for each
k = 1, 2, . . . , n,

f(k) + f(k + 1)

2
<

∫ k+1

k

f(x) dx.

Hint: Integrate the inequality (2) with respect to t from t = 0 to t = 1; the integer k should be treated as a
constant. For your integral on the right hand side, make the change of variables x = t+ k.

3. Use your results of the previous two parts to conclude that the terms (summands) of An are positive. Explain
why this guarantees that the {An} is an increasing sequence.

4. By a careful study of the geometry in Figure 1, it can be shown that, for each n = 1, 2, 3 . . . , An is bounded
above by T where T is the area of the red triangle in the figure. In other words,

An ≤ T =
f(2)− f(1)

2
(3)

for each n = 1, 2, 3, . . .. Use Figure 2 below to explain why (3) is true, in your own words. You will need to
explain the following:

• why each blue sliver can be moved into the red triangle (Hint: use the concavity property to explain why
each secant line may be moved into the red triangle so that the secant line will not intersect the graph
of f(x))

• why no two blue slivers will intersect each other in the red triangle, except at the their common endpoint.

• why no blue sliver will intersect the top of the red triangle. (Hint: use the increasing and concavity
assumption.)

You may find it useful to think about moving the second blue sliver into the red triangle and how this
construction extends to the remaining blue slivers.

5. Use the monotone convergence theorem to conclude that {An} converges to some limit K = lim
n→∞

An.

6. Now, we focus on a special case. Let f(x) = lnx for x ≥ 1. Using the fundamental theorem of calculus, verify
that this is continuous, increasing and concave down on [1,∞).

3Here we are using a sort of extra nice version of monotonicity: If f(x) < g(x) for all x ∈ (a, b), then
∫ b
a f <

∫ b
a g. Though you don’t

need to prove this, it is easy to do for continuous functions by the ideas of the previous homework.
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x
nn-11 2 3

y

y=f(x)

Figure 2: Sliding Slivers

7. Prove that

An =

∫ n

1

lnx dx−
(
ln 1

2
+ ln 2 + · · ·+ ln(n− 1) +

lnn

2

)
= n lnn− n+ 1− lnn! + ln

√
n

= 1 + ln

(
(n/e)n

√
n

n!

)
and use it and what you have down above to show that

lim
n→∞

n!

(n/e)n
√
n
= e1−K .

In fact, it can be shown that limn→∞ An = K = 1− ln
(√

2π
)
, and so lim

n→∞

n!

(n/e)n
√
n
=

√
2π. You don’t need

to determine this constant (what we’ve done in this exercise isn’t enough to do it).

8. From your result above, this means that
n! ≈

√
2πn(n/e)n

for large n; this is called Stirling’s Formula and it has many applications in mathematics, physics and computer
science.

a. Use the formula to approximate 15! and check with your calculator that it’s a decent approximation.

b. The number of digits of an integer x is

log10(x) + 1 =
ln(x)

ln(10)
+ 1.

Use a calculator (e.g. Google or Wolfram Alpha) and Stirling’s Formula to approximate the number of
digits of 100!. To provide an appreciation of how large 100! is, the (conjectured) number of particles in
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the known universe is a number with ≈ 87 digits. Using Wolfram Alpha, you can calculate the number of
digits of 100! exactly. How close is your approximation from the actual answer?

c. Suppose you flip a fair coin 2n times. In an introductory probability/discrete math course (e.g. MA381),
you would be able to show that the probability that exactly n heads appear is

(2n)!

n!n!

1

22n

Applying Stirling’s formula, for large n, this is approximately 1√
πn

.
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