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1 Predicates
We use the terms “statement” and
“claim” interchangeably.

1.1 Definition

A (mathematical) predicate in one variable is a mathematical sentence
involving a “free variable parameter” which ranges over a set of values,
referred to as the domain of the predicate.

If the variable in the predicate is replaced by a value, the resulting sen-
tence is a mathematical statement (and hence is either true or false).

One may think of a predicate as a collection of statements, one for each
possible value of the variable. We say that the statements are “indexed”
by the variable.

1.2 Example

“x+3=2” is a predicate when x varies over R. When x = 3.1 we get a
false statement; when x = −1 we get a true one; etc.

Note that the hypothesis and the con-
clusion in this “conditional” predi-
cate are themselves predicates!

Don’t forget that a conditional state-
ment is false only when the hypothe-
sis is a true statement and the conclu-
sion is a false one.

1.3 Example

A bit trickier:

“if x2 > sin(x) then cos(x) > x3”

is also an example of a predicate. When x = 0 it yields a true statement,
and when x = 1 – a false one.
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1.4 Definition

Predicates in several variables are defined similarly. For example, when
x and y range over R, “x2 + y2 = 1” is a predicate in two variables.

One can also treat “x2 + y2 = 1′′ as a predicate in three variables x, y, z,
with x, y, z ranging over R, even though z is not visible (think of it as being
present but with a zero coefficient, as in x2 + y2 + 0z = 1).

It is common to drop off the quotation marks around statements and predi-
cates, and to rely on other forms of delineation, or on the context. We shall
do so henceforth.

Usually one may infer the domains of the variables of a predicate implicitly
from the context, similarly to the way this is done for the domains of func-
tions. For example, in looking at 1

x +
√

y = z within R one will assume that
x is non-zero and y is non-negative.

1.5 Notation

We write P(x) or S(t) to indicate a predicate in variable x, and a pred-
icate in variable t respectively. Obviously T(t, x, #) is used to indicate a
predicate in variables t, x, #.

If one thinks of a predicate as signifying a collection of statements, one
can immediately see that the names for the variables can be altered consistently
throughout, without changing the predicate. If x and w range over Q, and y and
u range over R, then the predicates

x2 − y3 < xy

and
w2 − u3 < uw

are identical because they represent exactly the same collections of state-
ments. Let us adopt this point of view.

1.6 Comment

Note that in Chapter 3, Biggs is playing rather loose with these concepts.
To correct for this imprecision simply interpret his p’s, q’s and r’s as
predicates, especially when he starts constructing truth tables.

Biggs says that two statements are “equivalent” when he means that
they have the same truth value. We will say the latter, not the former.
“Logically equivalent” shall be reserved for the realm of predicates.

Notice that in 3.6 Biggs does use predicates when he talks about universal
and existential quantification.
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The symbol “∀” is read as “for all” or
“for every”.

The symbol “∃” is read as “there ex-
ists”.

Is claim (1) true?

Is claim (2) true?

1.7 Definition

“Quantified statements” are statements about predicates (i.e. about col-
lections of statements). For example,

∀x ∈ R : x2 > 0

is a claim that every statement of the form ?2 > 0 (with ? a real number)
is true. On the other hand,

∃x ∈ R such that (if x2 > sin(x) then cos(x) > x3) (1)

is the claim that for at least one real value a of x the statement

if a2 > sin(a) then cos(a) > a3

is true.

Similarly
∀x ∈ R : (∃y ∈ R such that x3 + sin y > 0) (2)

is a claim that no matter what real value α is assigned to x (first!), there
is a real value β for y such that α3 + sin β > 0 is true.

In general, if P(x) is a predicate and x ranges over domain D, then

∀x ∈ D : P(x)

and
∃x ∈ D such that P(x)

are statements (NOT predicates!). The first one is true exactly when ev-
ery statement in the collection signified by P(x) is true; the second –
when at least one statement in the collection is true.

A “proclamation” is a claim that a
statement is true.

You may have noticed in your previous encounters with mathematical
texts that in mathematics it is quite common to “drop off” a universal
quantifier (i.e. to keep it implicit) when the context is clear.

For example, a proclamation

n2 + n is an even integer

would be one such instance. Since

n2 + n is an even integer

is a predicate, it has no inherent truth value.

The actual proclamation being made here is in fact:
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n2 + n is always an even integer;

or, more prcisely:

for any integer n : n2 + n is an even integer;

or, in other words:

∀n ∈ Z : 2 divides n2 + n.

Notice that the implicit domain of the variable n here is taken to be
Z. This is the most general domain based on our interpretation of
the naming convention for the variables, and the terminology of the
predicate.

To turn a predicate into a statement through a quantification of the variables,
one needs to quantify all of the variables.

Is (3) a true statement?

For example,

∀x ∈ R : (∃y ∈ R such that x3 + sin y > 0) (3)

is a statement, while

∃y ∈ R such that x3 + sin y > 0 (4)

is a predicate in variable x, and NOT a statement! Indeed, for each fixed value
of x, (4) makes a claim about a collection of statements parametrized by y.
This claim is either true or false, depending on which value of x is chosen at
the outset. So, (4) is a collection of claims parametrized by x.

Quantified statements are read from left to right. Still, one often hears folks
refer to the “outside” quantifiers and the “inside” quantifiers. This may
remind you of the way Chain Rule procedure was described in your Calculus
course.

In general, if P(x, y) is a predicate and x ranges over domain D, and y ranges
over E, then there are eight natural (doubly-)quantified claims that can be
made:

FFF

1. ∀x ∈ D :
(
∀y ∈ E : P(x, y)

)
2. ∀x ∈ D :

(
∃y ∈ E such that P(x, y)

)
3. ∃x ∈ D such that

(
∃y ∈ E such that P(x, y)

)
4. ∃x ∈ D such that

(
∀y ∈ E : P(x, y)

)
5. ∀y ∈ E :

(
∀x ∈ D : P(x, y)

)
6. ∀y ∈ E :

(
∃x ∈ D such that P(x, y)

)
7. ∃y ∈ E such that

(
∃x ∈ D such that P(x, y)

)
8. ∃y ∈ E such that

(
∀x ∈ D : P(x, y)

)
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To visualize the kinds of claims these statements represent, let us imagine
that all of the statements signified by the predicate P(x, y) are arranged in
a table of sorts, with values of x indicating the rows of the table (ex. xo-th
row) and the values of y – the columns, as per diagram below.

For example, if our predicate P(x,y) is

x3 + sin y > 0,

with x ranging over the rational numbers, and y ranging over the reals, then
the statement in the − 2

11 th row and πth column of the “P-table” is

− 8
113 + sin π > 0.

Now, the claim
∀x ∈ D :

(
∀y ∈ E : P(x, y)

)
is true exactly when in every row of the P-table every statement is true. In
other words, exactly when all statements in the table are true.

The claim
∀x ∈ D :

(
∃y ∈ E such that P(x, y)

)
holds true exactly when in every row of the P-table at least one of the state-
ments is true. Therefore, the claim is false exactly when there is a row of the
P-table which holds only false statements.

1.8 Exercise
1. Work through the remaining five statements on the listFFF above,

and for each write down what it means for it to be true (and then
– false) in terms of the truth values of the statements (and their
locations) in the corresponding P-table.

2. Argue that the statements 1) and 5) on the listFFF above always
have the same truth value.

3. Argue that the statements 3) and 7) on the listFFF above always
have the same truth value.
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2 Negating quantified statements

Symbol “¬” is read as “it is not the
case that”

Convince yourself that when P(x) is
a predicate, so is ¬P(x).

A few minutes of thought should convince you of the validity of the fol-
lowing method of negating quantified statements when only one variable is
involved:

¬(∀x ∈ R : P(x)) (5)

has the same truth value as

∃x ∈ R such that ¬P(x). (6)

Indeed, (5) is true exactly when

∀x ∈ R : P(x)

is false, i.e. exactly when there is at least one real value a of x such that P(a)
is false; i.e. exactly when (6) is true.

Similarly

¬(∃x ∈ R such that P(x))

has the same truth value as

∀x ∈ R : ¬P(x).

The same principle applies when more than one variable and quantifier are
involved. For example,

One wacky way to remember how
this works is to imagine that a nega-
tory wizard Voldemort, pointing the
Elder wand ¬, is fighting his way
from the left into the claim Hog-
warts towards Harry Potter predicate
P(x, y). Each time you-know-who en-
counters a quantifier manned by a
guardian variable, he issues a spell
and turns the quantifier into its coun-
terpart (∀ to ∃, and vice versa), thus
discombobulating the variable long
enough to pass by. The wizard stops
when he reaches Harry Potter pred-
icate P(x, y) and points the wand to
Harry’s chest.

¬ (∀x ∈ D : (∃y ∈ E such that P(x, y)))

has the same truth value as

∃x ∈ D such that (∀y ∈ E : ¬P(x, y))
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3 Exercises

3.1 Exercise

Consider the following two statements.

1. “∀a ∈ R :
(

a > 0 =⇒ a113 − a100 + 0.123 > 0
)

”.

2. “∀a ∈ (0, ∞) : a113 − a100 + 0.123 > 0”.

Argue that these statements have the same truth value. To this end you
need to demonstrate that when of the statements is true, then so is the
other. (Why is this sufficient?)

3.2 Exercise

In this exercise you are being asked to extend the result of Exercise 3.1.

Suppose that P(γ) is a predicate with γ ranging over Z. Here (and
elsewhere) N stands for the set of positive integers, and Z stands for the
set of all integers.

Argue that the following statements have the same truth value.

1. ∀γ ∈ Z :
(

γ ∈N =⇒ P(γ)
)

.

2. ∀γ ∈N : P(γ).

3.3 Exercise

In this exercise you are being asked to extend the result of Exercises 3.1
and 3.2.

Suppose that P(γ) is a predicate with γ ranging over a set T , that con-
tains a set S .

Argue that the following statements have the same truth value.

1. ∀γ ∈ T :
(

γ ∈ S =⇒ P(γ)
)

.

2. ∀γ ∈ S : P(γ).

3.4 Exercise

Take P(n, w) to be the sentence “ nw ≥ 106 ” where n ranges over N and
w ranges over the open interval (0, 1) of real numbers, and decide which
of the eight natural doubly-quantified claims on the listFFF above are
true.
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3.5 Exercise

Find a predicate P(x, y) with x and y ranging over N, such that BOTH
of the following are satisfied:

1. “∀x ∈N : (∃y ∈N such that P(x, y))” is a true statement;

2. “∃y ∈N such that (∀x ∈N : P(x, y))” is a false statement.

3.6 Exercise

By giving concrete examples of predicates, demonstrate that apart from
the pairs indicated in Exercise 1.8, no other pairs of statements on the list
FFF always have identical truth values.

3.7 Exercise

Consider the proverb:

“One can fool some of the people all of the time and all of the
people some of the time, but one cannot fool all of the people
all of the time.”

1. Let M(ρ, t) stand for
“One can fool person ρ at the time instance t.”

Let us agree that t ranges over the set T of all moments of time,
and ρ ranges over the set P of all people on earth. Fill in “. . .”
appropriately to obtain a representation of the proverb above in
the following form:(
∃ρ ∈ P such that

(
. . . M(ρ, t)

))
and(

∃t ∈ T such that
(

. . . M(ρ, t)
))

and
(
¬
(
∀ . . . M(ρ, t)

))
2. Use the result of the first part of the problem and the methods of

negation of quantified statements to write down the NEGATION of
the proverb in English. Obviously I am NOT after something which
uses expressions such as “it is not the case". Your answer should be
along the lines of the original statement, and should sound good
and perhaps be even wise.
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Timothy Gowers is a British math-
ematician who received the Fields
Medal, a highest prize in mathemat-
ics, in 1998, but not for this paradox.
:-)

To say that one set (S) of real num-
bers is a subset of another (T ), is to
say that every element of S is an ele-
ment of T . We write S ⊂ T for the
statement “S is a subset of T ”.

3.8 Exercise
1. Suppose that P(x) is a predicate with x varying over a given set Ω,

and Q is a statement. Argue that the statements(
∃x ∈ Ω such that P(x)

)
∨Q

and
∃x ∈ Ω such that

(
P(x) ∨Q

)
have the same truth value.

2. The following paradox is based on an idea by Timothy Gowers.
It should be obvious to you that the following claim is true for any
subsets S and T of R:(

∀x ∈ S : x ∈ T
)
=⇒ S ⊂ T . (7)

To simplify the notation, let us write �(x) for “x ∈ T ”, and 4 for
“S ⊂ T ”. We will carry along the universal quantification over all
subsets S and T of R implicitly.
The true statement (7) can then be expressed as(

∀x ∈ S : �(x)
)
=⇒ 4,

and (by the definition of the connective “=⇒”) has the same truth
value as the statement

¬
(
∀x ∈ S : �(x)

)
∨4,

which, in turn, has the same truth value as(
∃x ∈ S such that ¬�(x)

)
∨4.

Applying the result of part 1 to this last true statement, we can
conclude that the statement

∃x ∈ S such that
(
¬�(x) ∨4

)
is true, and therefore the statement

∃x ∈ S such that
(
�(x) =⇒ 4

)
is true. Returning to the original notation, and making the quan-
tification explicit yields a true statement
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For any subsets S and T of R: ∃x ∈ S such that(
x ∈ T =⇒ S ⊂ T

)
.

Expressing this in an even less compressed form we have:
For any subsets S and T of R: there exists an element x of

S such that
(

x ∈ T =⇒ S ⊂ T
)

.

Yet it is clear that this last statement cannot possibly be true, since
expressed in a more plain language it claims that for any pair of
subsets S and T of R, there is always a “special” element of S such
that its membership in T automatically entails the membership of
all other elements of S in T (i.e. S ⊂ T ).
Find the flaw in the argument and resolve the paradox.


	1 Predicates
	2 Negating quantified statements
	3 Exercises

