
THE REAL AND COMPLEX NUMBER SYSTEMS S 

1.11 Theorem Suppose Sis an ordered set with the /east-upper-bound property, 
B c S, B is not empty, and B is bounded below. Let L be the set of a// lower 
bounds of B. Then 

ex= supL 
exists in S, and ot: = inf B. 

In particular, inf B exists in S. 

Proof Since B is bounded below, L is not empty. Since L consists of 
exactly those y e S which satisfy the inequality y x for every x e B, we 
see that every x e B is an upper bound of L. Thus L is bounded above. 
Our hypothesis about S implies the ref ore that L has a supremum in S; 
call it ex. 

If y < ex then (see Definition 1.8) y is not an upper bound of L, 
hence y ¢ B. It follows that ex~ x for every x e B. Thus ot: e L. 

If ex < f3 then /3 ¢ L, since ex is an upper bound of L. 
We have shown that ex e L but f3 ¢ L if /3 > ex. In other words, ot: 

is a lower bound of B, but f3 is not if /3 > ex. This means that ex= inf B. 

FIELDS 

1.12 Definition A field is a set F with two operations, called addition and 
multiplication, which satisfy the following so-called ''field axioms'' (A), (M), 
and (D): 

(A) Axioms for addition 

(Al) If x e F and ye F, then their sum x + y is in F. 
(A2) Addition is commutative: x + y = y + x for all x, ye F. 
(A3) Addition is associative: (x + y) + z = x + (y + z) for all x, y, z e F. 
(A4) F contains an element O such that O + x = x for every x e F. 
(AS) To every x e F corresponds an element -x e F such that 

X +(-x) = 0. 

(M) Axioms for multiplication 

(Ml) If x e F and ye F, then their product xy is in F. 
(M2) Multiplication is commutative: xy = yx for all x, ye F. 
(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z e F. 
(M4) F contains an element 1 'I: 0 such that Ix= x for every x e F. 
(MS) If x e F and x 'I: 0 then there exists an element 1/x e F such that 

x·(l/x)=l. 
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(D) The distributive law 
x(y + z) = xy + xz 

holds for all x, y, z e F. 

1.13 Remarks 

(a) One usually writes (in any field) 

X 2 3 x - y, - , x + y + z, xyz, x , x , 2x, 3x, ... 
y 

in place of 

X + (-y), X' 
1 
- ' (x + y) + z, (xy)z, xx, XXX, X + X, X + X + x, .... 

(b) The field axioms clearly hold in Q, the set of all rational numbers, if 
addition and multiplication have their customary meaning. Thus Q is a 
field. 
(c) Although it is not our purpose to study fields (or any other algebraic 
structures) in detail, it is worthwhile to prove that some familiar properties 
of Q are consequences of the field axioms; once we do this, we will not 
need to do it again for the real numbers and for the complex numbers. 

1.14 Proposition The axioms for addition imply the following statements. 

(a) If x + y = x + z then y = z. 
(b) If x + y = x then y = 0. 
( c) If x + y = 0 then y = - x. 
(d) -(-x) = x. 

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness 
of the element whose existence is assumed in (A4), and that (c) does the same 
for (AS). 

Proof If x + y = x + z, the axioms (A) give 

y = 0 + y = ( -x + x) + y = -x + (x + y) 
= -x + (x + z) = (-x + x) + z = 0 + z = z. 

This proves (a). Take z = 0 in (a) to obtain (b). Take z = -x in (a) to 
obtain (c). 
Since -x + x = 0, (c) (with -x in pl~ce of x) gives (d). 
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1.15 Proposition The axioms for multiplication imply the following statements. 

(a) If x =I= 0 and xy = xz then y = z. 
(b) Ifx =I= 0 and xy = x then y = 1. 
(c) If x =I= 0 and xy = 1 then y = 1/x. 
(d) If x =I= 0 then 1/(1/x) = x. 

The proof is so similar to that of Proposition 1.14 that we omit it. 

1.16 Proposition The field axioms imply the following statements, for any x, y, 
zeF. 

(a) Ox= 0. 
(b) If x =I= 0 and y =I= 0 then xy =I= 0. 
(c) (-x)y = -(xy) = x(-y). 
(d) (-x)(-y) = xy. 

Proof Ox+ Ox= (0 + O)x = Ox. Hence l.14(b) implies that Ox= 0, and 
(a) holds. 

Next, assume x =I= 0, y =I= 0, but xy = 0. Then (a) gives 

1 1 1 
1 = - - xy = -

y X y 

a contradiction. Thus (b) holds. 
The first equality in (c) comes from 

1 
- 0 = 0, 
X 

( - x)y + xy = ( - x + x)y = Oy = 0, 

combined with 1.14(c); the other half of (c) is proved in the same way. 
Finally, 

(-x)(-y)= -[x(-y)]= -[-(xy)]=xy 

by (c) and 1.14(d). 

1.17 Definition An ordered.field is a.field F which is also an ordered set, such 
that 

(i) x + y < x + z if x, y, z e F and y < z, 
(ii) xy > 0 if x e F, y e F, x > 0, and y > 0. 

If x > 0, we call x positive; if x < 0, xis negative. 
For example, Q is an ordered field. 
All the familiar rules for working with inequalities apply in every ordered 

field: Multiplication by positive [negative] quantities preserves [reverses] in-
equalities, no square is negative, etc. The following proposition lists some of 
these. 
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1.18 Proposition The following statements are true in every ordered field. 

(a) If x > 0 then - x < 0, and vice versa. 
(b) If x > 0 and y < z then xy <xz. 
(c) If x < 0 and y < z then xy > xz. 
(d) If x 'I: 0 then x 2 > 0. In particular, 1 > 0. 
(e) If O < x < y then O < 1/y < 1/x. 

Proof 
(a) If x > 0 then O = -x + x > -x + 0, so that -x < 0. If x < 0 then 
0 = -x + x < -x + 0, so that -x > 0. This proves (a). 
(b) Since z > y, we have z - y > y - y = 0, hence x(z - y) > 0, and 
therefore 

xz = x(z - y) + xy > 0 + xy = xy. 

(c) By (a), (b), and Proposition l.16(c), 

-[x(z -y)] = (-x)(z -y) > 0, 

so that x(z - y) < 0, hence xz < xy. 
(d) If x > 0, part (ii) of Definition 1.17 gives x 2 > 0. If x < 0, then 
-x > 0, hence (-x)2 > 0. But x 2 = (-x)2 , by Proposition l.16(d). 
Since 1 = 12 , 1 > 0. 
(e) lfy > 0 and v 0, thenyv 0. Buty · (1/y) = 1 > 0. Hence 1/y > 0. 
Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by 
the positive quantity (1/x)(l/y), we obtain 1/y < 1/x. 

THE REAL FIELD 

We now state the existence theorem which is the core of this chapter. 

1.19 Theorem There exists an ordered field R which has the /east-upper-bound 
property. 

Moreover, R contains Q as a subfield. 

The second statement means that Q c R and that the operations of 
addition and multiplication in R, when applied to members of Q, coincide with 
the usual operations on rational numbers; also, the positive rational numbers 
are positive elements of R. 

The members of Rare called real numbers. 
The proof of Theorem 1.19 is rather long and a bit tedious and is the ref ore 

presented in an Appendix to Chap. 1. The proof actually constructs R from Q. 


