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1.11 Theorem Suppose S is an ordered set with the least-upper-bound property,
B < S, B is not empty, and B is bounded below. Let L be the set of all lower
bounds of B. Then
a=supL
exists in S, and o = inf B.
In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of
exactly those y € § which satisfy the inequality y < x for every x € B, we
see that every x € B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S;
call it a.

If y <a then (see Definition 1.8) y is not an upper bound of L,
hence y ¢ B. It follows that a < x for every x e B. Thus a € L.

If o < f then B ¢ L, since a is an upper bound of L.

We have shown that ae L but B¢ L if f > a. In other words, «
is a lower bound of B, but § is not if § > a«. This means that « = inf B.

FIELDS

1.12 Definition A fie/d is a set F with two operations, called addition and
multiplication, which satisfy the following so-called ‘‘field axioms” (A), (M),
and (D):

(A) Axioms for addition

(A1) If xe F and y € F, then their sum x + y is in F.

(A2) Addition is commutative: x + y =y + x for all x, ye F.

(A3) Addition is associative: (x + y) +z=x + (y + 2) forall x, y,z€ F.
(A4) F contains an element O such that 0 + x = x for every x € F.

(A5) To every xeF corresponds an element —xe F such that

x+(=x)=0.

(M) Axioms for multiplication

(M1) If x € F and y € F, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx for all x, y e F.

(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, ze F.
(M4) F contains an element 1 # 0 such that 1x = x for every x € F.
(M5) If xe F and x # O then there exists an element 1/x € F such that

x-(1/x)=1.
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(D) The distributive law

x(y+2)=xy+xz

holds for all x, y, z€ F.

1.13

1.14

Remarks

(@) One usually writes (in any field)
x —-y,;c-, x+y+z xyz, x2, x3,2x,3x, . ..
in place of
x+(-—y),x-e),(x+y)+z, (xy)z, xx, xxx, X + X, X + x + X, . ...

() The field axioms clearly hold in Q, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field.

(c) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of Q are consequences of the field axioms; once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

Proposition The axioms for addition imply the following statements.

@ Ifx+y=x+ztheny=2z.
b) If x+y=xtheny=0.
(o0 Ifx+y=0theny= —x.
d —-(-x)=ux

Statement (q) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence is assumed in (A4), and that (c) does the same
for (AS).

Proof If x + y = x + z, the axioms (A) give

y=0+y=(—x+x)+y=—-x+(x+Yy)
==x+x+2)=(—x+Xx)+2z=0+2z=2z

This proves (a). Take z =0 in (a) to obtain (b). Take z= —x in (a) to
obtain (¢c).
Since —x + x =0, (c) (with —x in place of x) gives (d).
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1.15 Proposition The axioms for multiplication imply the following statements.

(@ Ifx+#0and xy=xztheny=z.
(b) Ifx+#0and xy=xtheny=1.

© Ifx#0andxy=1theny=1/x.
(d) If x £0 then 1/(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.16 Proposition The field axioms imply the following statements, for any x, y,
zeF,

(@ Ox=0.

(b) Ifx+#0andy +#0 then xy #0.

(©) (=x)y=—(xy)=x(-))

@) (=x)(-y) = xy.

Proof Ox + Ox = (0 + O)x = Ox. Hence 1.14(b) implies that Ox = 0, and

(a) holds.
Next, assume x # 0, y # 0, but xy = 0. Then (a) gives

1
()o@ -o
Y/ \X Y/ \X
a contradiction. Thus (b) holds.
The first equality in (c) comes from

(=x)y+xy=(—x+xy=0=0,

combined with 1.14(c); the other half of (c) is proved in the same way.

Finally,
(=x)(=y) = =[x(=»] = —[-(x»)] = xy

by (c) and 1.14(d).

1.17 Definition An ordered field is a field F which is also an ordered set, such
that

) x+y<x+zifx,y,zeFandy <z,
(i) xy>0ifxeF,yeF,x>0,andy > 0.

If x > 0, we call x positive; if x <0, x is negative.

For example, Q is an ordered field.

All the familiar rules for working with inequalities apply in every ordered
field: Multiplication by positive [negative] quantities preserves [reverses] in-
equalities, no square is negative, etc. The following proposition lists some of
these.
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1.18 Proposition The following statements are true in every ordered field.

(@ If x>0 then —x <0, and vice versa.

b) If x>0andy <z then xy <xz.

(00 Ifx<0andy< zthen xy> xz.

(d) If x #0 then x> > 0. In particular, 1 > 0.
(&) If0<x<ythen0<lly<l/x.

Proof
(@ Ifx>0then0= —x+ x> —x+0, so that —x < 0. If x <O then
0= —x+x< —x+0, so that —x > 0. This proves (a).
(b) Since z>y, we have z—y >y —y=0, hence x(z —y) >0, and
therefore

xz=x(z—y)+xy >0+ xy = xy.
(¢) By (a), (b), and Proposition 1.16(c),

—[x(z = )] = (=x)(z - y) >0,

so that x(z — y) <0, hence xz < xy.
(d) If x>0, part (ii) of Definition 1.17 gives x2 > 0. If x <0, then
—x >0, hence (—x)?>0. But x*=(—x)2, by Proposition 1.16(d).
Since 1 = 12,1 > 0.
() Ify>0andv<0,thenyv<0. Buty-(1/y)=1>0. Hence l/y > 0.

Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by
the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an ordered field R which has the least-upper-bound

property.
Moreover, R contains Q as a subfield.

The second statement means that Q = R and that the operations of
addition and multiplication in R, when applied to members of Q, coincide with
the usual operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers.

The proof of Theorem 1.19 is rather long and a bit tedious and is therefore

presented in an Appendix to Chap. 1. The proof actually constructs R from Q.



