1.11 Theorem Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S, and $\alpha = \inf B$.

In particular, inf B exists in S.

Proof Since B is bounded below, L is not empty. Since L consists of exactly those $y \in S$ which satisfy the inequality $y \le x$ for every $x \in B$, we see that every $x \in B$ is an upper bound of L. Thus L is bounded above. Our hypothesis about S implies therefore that L has a supremum in S; call it α .

If $\gamma < \alpha$ then (see Definition 1.8) γ is not an upper bound of L, hence $\gamma \notin B$. It follows that $\alpha \leq x$ for every $x \in B$. Thus $\alpha \in L$.

If $\alpha < \beta$ then $\beta \notin L$, since α is an upper bound of L.

We have shown that $\alpha \in L$ but $\beta \notin L$ if $\beta > \alpha$. In other words, α is a lower bound of B, but β is not if $\beta > \alpha$. This means that $\alpha = \inf B$.

FIELDS

1.12 Definition A *field* is a set F with two operations, called *addition* and *multiplication*, which satisfy the following so-called "field axioms" (A), (M), and (D):

(A) Axioms for addition

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that

$$x + (-x) = 0.$$

(M) Axioms for multiplication

- (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
- (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.
- (M3) Multiplication is associative: (xy)z = x(yz) for all $x, y, z \in F$.
- (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x \cdot (1/x) = 1.$$

(D) The distributive law

$$x(y+z) = xy + xz$$

holds for all $x, y, z \in F$.

1.13 Remarks

(a) One usually writes (in any field)

$$x - y, \frac{x}{y}, x + y + z, xyz, x^2, x^3, 2x, 3x, \ldots$$

in place of

$$x + (-y), x \cdot \left(\frac{1}{y}\right), (x + y) + z, (xy)z, xx, xxx, x + x, x + x + x, \ldots$$

(b) The field axioms clearly hold in Q, the set of all rational numbers, if addition and multiplication have their customary meaning. Thus Q is a field.

(c) Although it is not our purpose to study fields (or any other algebraic structures) in detail, it is worthwhile to prove that some familiar properties of Q are consequences of the field axioms; once we do this, we will not need to do it again for the real numbers and for the complex numbers.

1.14 Proposition The axioms for addition imply the following statements.

- (a) If x + y = x + z then y = z. (b) If x + y = x then y = 0. (c) If x + y = 0 then y = -x.
- $(d) \quad -(-x)=x.$

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness of the element whose existence is assumed in (A4), and that (c) does the same for (A5).

Proof If x + y = x + z, the axioms (A) give

$$y = 0 + y = (-x + x) + y = -x + (x + y)$$

= -x + (x + z) = (-x + x) + z = 0 + z = z.

This proves (a). Take z = 0 in (a) to obtain (b). Take z = -x in (a) to obtain (c).

Since -x + x = 0, (c) (with -x in place of x) gives (d).

1.15 Proposition The axioms for multiplication imply the following statements.

- (a) If $x \neq 0$ and xy = xz then y = z.
- (b) If $x \neq 0$ and xy = x then y = 1.
- (c) If $x \neq 0$ and xy = 1 then y = 1/x.
- (d) If $x \neq 0$ then 1/(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

1.16 Proposition The field axioms imply the following statements, for any $x, y, z \in F$.

- (a) 0x = 0. (b) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$. (c) (-x)y = -(xy) = x(-y).
- $(d) \quad (-x)(-y) = xy.$

Proof 0x + 0x = (0 + 0)x = 0x. Hence 1.14(b) implies that 0x = 0, and (a) holds.

Next, assume $x \neq 0$, $y \neq 0$, but xy = 0. Then (a) gives

$$1 = \left(\frac{1}{y}\right) \left(\frac{1}{x}\right) xy = \left(\frac{1}{y}\right) \left(\frac{1}{x}\right) 0 = 0,$$

a contradiction. Thus (b) holds.

The first equality in (c) comes from

(-x)y + xy = (-x + x)y = 0y = 0,

combined with 1.14(c); the other half of (c) is proved in the same way. Finally,

$$(-x)(-y) = -[x(-y)] = -[-(xy)] = xy$$

by (c) and 1.14(d).

1.17 Definition An ordered field is a field F which is also an ordered set, such that

- (i) x + y < x + z if $x, y, z \in F$ and y < z,
- (ii) xy > 0 if $x \in F$, $y \in F$, x > 0, and y > 0.

If x > 0, we call x positive; if x < 0, x is negative.

For example, Q is an ordered field.

All the familiar rules for working with inequalities apply in every ordered field: Multiplication by positive [negative] quantities preserves [reverses] inequalities, no square is negative, etc. The following proposition lists some of these. **1.18 Proposition** The following statements are true in every ordered field.

- (a) If x > 0 then -x < 0, and vice versa.
- (b) If x > 0 and y < z then xy < xz.
- (c) If x < 0 and y < z then xy > xz.
- (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
- (e) If 0 < x < y then 0 < 1/y < 1/x.

Proof

(a) If x > 0 then 0 = -x + x > -x + 0, so that -x < 0. If x < 0 then 0 = -x + x < -x + 0, so that -x > 0. This proves (a).

(b) Since z > y, we have z - y > y - y = 0, hence x(z - y) > 0, and therefore

$$xz = x(z - y) + xy > 0 + xy = xy.$$

(c) By (a), (b), and Proposition 1.16(c),

$$-[x(z-y)] = (-x)(z-y) > 0,$$

so that x(z - y) < 0, hence xz < xy.

(d) If x > 0, part (ii) of Definition 1.17 gives $x^2 > 0$. If x < 0, then -x > 0, hence $(-x)^2 > 0$. But $x^2 = (-x)^2$, by Proposition 1.16(d). Since $1 = 1^2$, 1 > 0.

(e) If y > 0 and $v \le 0$, then $yv \le 0$. But $y \cdot (1/y) = 1 > 0$. Hence 1/y > 0. Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

1.19 Theorem There exists an ordered field R which has the least-upper-bound property.

Moreover, R contains Q as a subfield.

The second statement means that $Q \subset R$ and that the operations of addition and multiplication in R, when applied to members of Q, coincide with the usual operations on rational numbers; also, the positive rational numbers are positive elements of R.

The members of R are called *real numbers*.

The proof of Theorem 1.19 is rather long and a bit tedious and is therefore presented in an Appendix to Chap. 1. The proof actually constructs R from Q.