Math 135: Homework 5

Please complete the following exercises below and write up your solutions consistent with the directions in the syllabus. Your solutions are due on Thursday, October 10th at 10:00AM in the appropriate box outside my office door. If you get stuck on any part of the homework, please come and see me. More importantly, have fun!

Exercise 1 (The Absolute Value). For $a \in \mathbb{R}$, define

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0. \end{cases}$$

This is called the absolute value of a.

- 1. Prove: For all $a, b \in \mathbb{R}$, |ab| = |a||b|. Hint: Check a bunch of cases and just apply the definition. So, e.g, if a < 0 and b > 0, then
- 2. Prove: For all $a \in \mathbb{R}$, |-a| = |a|.
- 3. Prove: For all $a \in \mathbb{R}$, $|a| = \sqrt{a^2}$. Hint: You must use what we proved in class about uniqueness of square roots.
- 4. Prove: For all $a, b \in \mathbb{R}$, $|a + b| \le |a| + |b|$. Hint: Again, check cases.
- 5. Prove: For all $a, b \in \mathbb{R}$, $||a| |b|| \le |a b|$
- 6. Prove: Let $a, b \in \mathbb{R}$. If, for every $\epsilon > 0$, $|a b| < \epsilon$, then a = b.
- 7. Finally, observe that if $a, b, c \in \mathbb{R}$, we have

$$|a-b| = |a-c+c-b| = |(a-c)-(b-c)| \le |a-c|+|b-c|.$$

where we have made use of the fourth item above. Explain why this inequality is called the *triangle inequality*. Hint: This of what this would mean if a, b, c were points in a plane (and not just on a line). There isn't anything to prove here, just an explanation.

Exercise 2. Please do:

- 1. Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit:
 - (a) $\lim \frac{1}{6n^2+1} = 0.$
 - (b) $\lim \frac{3n+1}{2n+5} = \frac{3}{2}$.
 - (c) $\lim \frac{2}{n+3} = 0.$
- 2. Argue that the sequence

$$1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, --$$
 five 0's $--, 1, ...$

does not converge to zero. For what values of $\epsilon > 0$ does there exists a response N? For which values of $\epsilon > 0$ is there no response?

3. Please do Exercise 2.2.4 in the second edition of Abbott.

Exercise 3. Recall our definition of convergence:

Math 135

Definition A. Let (a_n) be a sequence of real numbers and a another real number. We say that the sequence a_n converges to a if: For all $\epsilon > 0$, there is a natural number N for which

 $|a_n - a| < \epsilon$ whenever $n \ge N$.

In this case we will call a the limit of the sequence and write $\lim_{n \to \infty} a_n = a$.

Okay, now the preceding definition pertains to a sequence converging to a particular value of a. It is useful to make the following definition so that we can just talk about the sequence itself.

Definition B. A sequence (a_n) is said to converge if there exists $a \in \mathbb{R}$ such that (a_n) converges to a. In this case, we call a the limit of the sequence (a_n) . If (a_n) does not converge, we say it diverges.

With these definitions in mind, please do the following:

1. In class, we proved that the sequence (a_n) defined by

$$a_n = \frac{(-1)^n}{10^{10}}$$

for $n \in \mathbb{N}$ did not converge to the number 0. Prove that (a_n) does not converge (i.e., it diverges) by proving: For all $a \in \mathbb{R}$, (a_n) does not converge to a. *Hint: You must consider various cases.*

- 2. Though we used the definite article "the" in saying "we call a the limit of the sequence", nothing in the above explicitly rules out a sequence having more than one limit. Prove that this is not the case. That is, suppose that $\lim a_n = a$ and $\lim a_n = a'$ and prove that a = a'. Hint: First, you can use the triangle inequality to show that $|a a'| \leq |a a_n| + |a_n a'|$. Now make things small and use your result from the first exercise.
- 3. In the spirit of the argument you gave in the previous proof, please prove the following: Let (a_n) be a convergent sequence for which $a_n \leq M$ for all $n \in \mathbb{N}$, then $a = \lim_n a_n \leq M$.
 - (a) Is it possible to weaken the hypotheses to say that $a_n \leq M$ for all but a finite number of n? Will the result still hold? Can you weaken it further?
 - (b) Consider the analogous statement: If (a_n) is convergent and $a_n < M$ for all $n \in \mathbb{N}$, then a < M. If this is true, prove it. If it is false, provide a counterexample.

Exercise 4. In the second edition of Abbott, please do:

- 1. Exercise 2.3.1
- 2. Exercise 2.3.3
- 3. Exercise 2.3.7
- 4. Exercise 2.3.9