2

Methods of Proof

2.1 What is a Proof?

When a chemist asserts that a substance that is subjected to heat will
tend to expand, he/she verifies the assertion through experimentation. It
is a consequence of the definition of heat that heat will excite the atomic
particles in the substance; it is plausible that this in turn will necessitate
expansion of the substance. However our knowledge of nature is not such
that we may turn these theoretical ingredients into a categorical proof. Ad-
ditional complications arise from the fact that the word “expand” requires
detailed definition. Apply heat to water that is at 40° Fahrenheit or above,
and it expands—with enough heat it becomes a gas that surely fills more
volume than the original water. But apply heat to a diamond and there is
no apparent “expansion”—at least not to the naked eye.

Mathematics is a less ambitious subject. In particular, it is closed. It
does not reach outside itself for verification of its assertions. When we
make an assertion in mathematics, we must verify it using the rules that
we have laid down. That is, we verify it by applying our rules of logic to our
axioms and our definitions; in other words, we construct a proof. Section
1.8 contains some discussion of proofs and the rules of logic.

In modern mathematics we have discovered that there are perfectly sensi-
ble mathematical statements that in fact cannot be verified in this fashion,
nor can they be proven false. This is a manifestation of Gédel’s incomplete-
ness theorem: that any sufficiently complex logical system will contain such
unverifiable, indeed untestable, statements (see Section 1.8). Fortunately,
in practice, such statements are the exception rather than the rule. In this
book, and in almost all of university-level mathematics, we concentrate on
learning about statements whose truth or falsity is accessible by way of
proof.

This chapter considers the notion of mathematical proof. We shall con-
centrate on the three principal types of proof: direct proof, proof by con-
tradiction, and proof by induction. In practice, a mathematical proof may
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28 CHAPTER 2. METHODS OF PROOF

contain elements of several or all of these techniques. You will see all the
basic elements here. You should be sure to master each of these proof tech-
niques, both so that you can recognize them in your reading and so that
they become tools that you can use in your own work.

e

2.2 Direct Proof

In this section we shall assume that you are familiar with the positive
integers, or natural numbers (a detailed treatment of the natural numbers
appears in Section 6.1). This number system {1,2,3,...} is denoted by the
symbol N. For now we will take the elementary arithmetic properties of N
for granted. We shall formulate various statements about natural numbers
and we shall prove them. Our methodology will emulate the discussions in
earlier sections. We begin with a definition.

DEFINITION 2.1 A natural number n is said to be even if it can be divided
by 2, with integer quotient and no remainder.

DEFINITION 2.2 A natural number n is said to be odd if, when it is
divided by 2, the remainder is 1.

You may have never before considered, at this level of precision, what
is the meaning of the terms “odd” or “even”. But your intuition should
confirm these definitions. A good definition should be precise, but it should
also appeal to your heuristic idea about the concept that is being defined.

Notice that, according to these definitions, any natural number is either
even or odd. For if » is any natural number, and if we divide it by 2, then
the remainder will be either 0 or 1-—there is no other possibility (according
to the Euclidean algorithm—see [HER]). In the first instance, n is even; in
the second, n is odd.

In what follows we will find it convenient to think of an even natural
number as one having the form 2m for some natural number m. We will
think of an odd natural number as one having the form 2k — 1 for some
natural number k. Check for yourself that, in the first instance, division by
2 will result in a quotient of m and a remainder of 0; in the second instance
it will result in a quotient of £k — 1 and a remainder of 1.

Now let us formulate a statement about the natural numbers and prove it.
Following tradition, we refer to formal mathematical statements either as
theorems or propositions or sometimes as lemmas. A theorem is supposed to
be an important statement that is the culmination of some development of
significant ideas. A proposition is a statement of lesser intrinsic importance.
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Usually a lemma is of no intrinsic interest, but is needed as a step along
the way to verifying a theorem or proposition.

PROPOSITION 2.1
The square of an even natural number is even.

pROOF Let us begin by using what we learned in Chapter 1. We may
reformulate our statement as “If n is even then n-n is even.” This statement
makes a promise. Refer to the definition of “even” to see what that promise

18!

If n can be written as twice a natural number then n - n can be written as
twice a natural number.

The hypothesis of the assertion is that n = 2-m for some natural number
m. But then

n® =n-n=(2m)- (2m) = 4m? = 2(2m?).

Our calculation shows that n? is twice the natural number 2m?. So n? is
also even.

We have shown that the hypothesis that n is twice a natural number
entails the conclusion that n? is twice a natural number. In other words,
if m is even then n? is even. That is the end of our proof. i

REMARK 2.2 What is the role of truth tables at this point? Why did
we not use a truth table to verify our proposition? One could think of the
statement that we are proving as the conjunction of infinitely many specific
statements about concrete instances of the variable n; and then we could
verify each one of those statements. But such a procedure is inelegant and,
more importantly, impractical.

For our purpose, the truth table tells us what we must do to construct
a proof. The truth table for A => B shows that if A is false then there is
nothing to check whereas if A is true then we must ghow that B is true.
That is just what we did in the proof of Proposition 2.1.

Most of our theorems are “for all” statements or “there exists” state-
ments. In practice, it is not usually possible to verify them directly by use
of a truth table.

PROPOSITION 2.3
The square of an odd natural number is odd.

PROOF We follow the paradigm laid down in the proof of the previous
proposition.
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Assume that n is odd. Then n = 2m — 1 for some natural number m.
But then

n2=n~n=(2m-—1)-(2m—l)=4m2—4m+1:2(2m2—2m+1)—1.

We see that n? is 2m’ — 1, where m' = 2m? — 2m + 1. In other words,
according to our definition, n? is odd. |

Both of the proofs that we have presented are examples of “direct proof.”
A direct proof proceeds according to the statement being proved; for in-
stance, if we are proving a statement about a square then we calculate that
square. If we are proving a statement about a sum then we calculate that
sum. Here are some additional examples:

Example 2.3
Prove that if n is a positive integer, then the quantity n?+3n+ 2 is even.

Proof: Denote the quantity n? + 3n + 2 by K. Observe that
K=n?+3n+2=(n+1)(n+2).

Thus K is the product of two successive integers: n + 1 and n + 2. One
of those two integers must be even. So it is a multiple of 2. Therefore K
itself is a multiple of 2. Hence K must be even.

PROPOSITION 2.4
The sum of two odd natural numbers is even.

PROOF Suppose that p and g are both odd natural numbers. According
to the definition, we may write p = 2r — 1 and ¢ = 2s — 1 for some natural
numbers 7 and s. Then

p+g=02r—1)+(2s—-1)=2r+2s—2=2(r+s—1).

We have realized p + g as twice the natural number r 4+ s — 1. Therefore
p + ¢ is even.

REMARK 2.5 If we did mathematics solely according to what sounds
good, or what appeals intuitively, then we might reason as follows: “If the
sum of two odd natural numbers is even then it must be that the sum of
two even natural numbers is odd.” This is incorrect. For instance 4 and 6
are each even but their sum 4 + 6 = 10 is not odd.
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Intuition definitely plays an important role in the development of math-
ematics, but all assertions in mathematics must, in the end, be proved by
rigorous methods.

Example 2.4
Prove that the sum of an even integer and an odd integer is odd.

Proof: An even integer is divisible by 2, so may be written in the form
e = 2m, where m is an integer. An odd integer has remainder 1 when
divided by 2, so may be written in the form o = 2k + 1, where k is an
integer. The sum of these is

eto=2m+ (2k+1)=2(m+k)+1.

Thus we see that the sum of an even and an odd integer will have remainder
1 when it is divided by 2. As a result, the sum is odd.

PROPOSITION 2.6
The sum of two even natural numbers is even.

PROOF Let p = 2r and ¢ = 2s both be even natural numbers. Then
p+q=2r+2s=2(r+s).

We have realized p + ¢ as twice a natural number. Therefore we conclude
that p + ¢ is even.

PROPOSITION 2.7
Let n be a natural number. Then either n > 6 or n < 9.

PROOF If you draw a picture of a number line then you will have no
trouble convincing yourself of the truth of the assertion. What we want to
learn here is to organize our thoughts so that we may write down a rigorous
proof.

Our discussion of the connective “or” in Section 1.3 will now come to our
aid. Fix a natural number 7. If n > 6 then the “or” statement is true and
there is nothing to prove. If n # 6, then the truth table teaches us that we
must check that n < 9. But the statement n ¥ 6 means that n < 6 so we

have
n<6<9.

That is what we wished to prove. |
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Figure 1

Example 2.5
Prove that every even integer may be written as the sum of two odd inte-
gers.

Proof: Let the even integer be K = 2m, for m an integer. If m is odd
then we write

K=2m=m+m
and we have written K as the sum of two odd integers. If, instead, m is
even, then we write

K=2m=(m-1)+(m+1).

Since m is even then both m — 1 and m + 1 are odd. So again we have
written K as the sum of two odd integers. [l

Example 2.6
Prove the Pythagorean theorem.

Proof: The Pythagorean theorem states that c? = a2 + b%, where a and b
are the legs of a right triangle and c is its hypotenuse. See Figure 1.

Consider now the arrangement of four triangles and a square shown in
Figure 2. Each of the four triangles is a copy of the original triangle in
Figure 1. We see that each side of the all-encompassing square is equal to
¢. So the area of that square is ¢>. Now each of the component triangles
has base a and height b. So each such triangle has area ab/2. And the little
square in the middle has side b —a. So it has area (b—a)? = b2 — 2ab + a?.
We write the total area as the sum of its component areas:

b
=4- [%}+[b2—2ab+a2]=a2+b2.




2.3. PROOF BY CONTRADICTION 33

C
a b a
c b C
b
a b a
c
Figure 2

That is the desired equality.
I

In this section and the next two we are concerned with form rather than
substance. We are not interested in proving anything profound, but rather
in showing you what a proof looks like. Later in the book we shall con-

sider some deeper mathematical ideas and correspondingly more profound
proofs.

2.3 Proof by Contradiction

Aristotelian logic dictates that every sensible statement has a truth value:
TRUE or FALSE. If we can demonstrate that a statement A could not
possibly be false, then it must be true. On the other hand, if we can
demonstrate that A could not be true, then it must be false. Here is a
dramatic example of this principle. In order to present it, we shall assume
for the moment that you are familiar with the system Q of rational numbers.
These are numbers that may be written as the quotient of two integers
(without dividing by zero, of course).

THEOREM 2.8 PYTHAGORAS
There is no rational number z with the property that z2 = 2.
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PROOF In symbols (refer to Chapter 1), our assertion may be written
~ (3z,(z € QAz? =2)).
Let us assume the statement to be false. Then what we are assuming is
that
Jz,(z € QAz2 =2). (*)

Since z is rational we may write z = p/q, where p and ¢ are integers.

We may as well suppose that both p and ¢ are positive and non-zero.
After reducing the fraction, we may suppose that it is in lowest terms—so

p and ¢ have no common factors.
Now our hypothesis asserts that

z% =2
or 5
@) -
q
We may write this out as
PP = 2. (%)

Observe that this equation asserts that p® is an even number. But then p

must be an even number (p cannot be odd, for that would imply that p? is

odd by Proposition 2.3). So p = 2r for some natural number r.
Substituting this assertion into equaticn (*x) now yields that

(2r)% = 24°.
Simplifying, we may rewrite our equation as
2r% = 2.

This new equation asserts that ¢ is even. But then g itself must be even.

We have proven that both p and g are even. But that means that they
have a common factor of 2. This contradicts our starting assumption that
p and ¢ have no common factor.

Let us pause to ascertain what we have established: the assumption that
a rational square root x of 2 exists, and that it has been written in lowest
terms as = p/q, leads to the conclusion that p and ¢ have a common
factor and hence are mot in lowest terms. What does this entail for our
logical system?

We cannot allow a statement of the form C = AA ~ A (in the present
context the statement A is “z = p/q in lowest terms”). For such a state-
ment C must be false.

But if z exists then the statement C is true. No statement (such as A)
can have two truth values. In other words, the statement C must be false.

The only possible conclusion is that o does not exist. That is what we
wished to establish. 1

S —————
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REMARK 2.9 In practice, we do not include the last three paragraphs in
a proof by contradiction. We provide them now because this is our first
exposure to such a proof, and we want to make the reasoning absolutely
clear. The point is that the assertions A and ~ A cannot both be true.
An assumption that leads to this eventuality cannot be valid. That is the
essence of proof by contradiction.

Historically, Theorem 2.8 was extremely important. Prior to Pythagoras
(~ 300 B.C.), the ancient Greeks (following Eudoxus) believed that all
numbers (at least all numbers that arise in real life) are rational. However,
by the Pythagorean theorem, the length of the diagonal of a unit square is
a number whose square is 2. And our theorem asserts that such a number
cannot be rational. We now know that there are many non-rational, or
irrational, numbers. In fact in Section 4.5 we shall learn that, in a certain
sense to be made precise, “most” numbers are irrational.

Here is a second example of a proof by contradiction:

THEOREM 2.10 DIRICHLET

Suppose that n+ 1 pieces of mail are delivered to n mailboxes. Then some
mailbox contains at least two pieces of mail.

PROOF Suppose that the assertion is false. Then each mailbox contains
either zero or one piece of mail. But then the total amount of mail in all
the mailboxes cannot exceed

1+1+4---+1.
N ——

n times

In other words, there are at most n pieces of mail. That conclusion contra-
dicts the fact that there are n 4 1 pieces of mail. We conclude that some
mailbox contains at least two pieces of mail.

The last theorem, due to Gustav Lejeune Dirichlet (1805-1859), was
classically known as the Dirichletscher Schubfachschluss. This German
name translates to “Dirichlet’s drawer shutting principle.” Today, at least
in this country, it is more commonly known as “the pigeonhole principle.”
Since pigeonholes are no longer a common artifact of everyday life, we have
illustrated the idea using mailboxes.

Example 2.7 .
Draw the unit interval I in the real line. Now pick 11 points at randgm
from that interval (imagine throwing darts at the interval, or dropping
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ink drops on the interval). Then some pair of the points has distance not
greater than .1 inch.
To see this, write

I=1[0,1U[1,.2]U---[8,.91U[9,1].

Here we have used standard interval notation. Think of each of these subin-
tervals as a mailbox. We are delivering 11 letters (that is, the randomly
selected points) to these ten mailboxes. By the pigeonhole principle, some
mailbox must receive two letters.

We conclude that some subinterval of I, having length .1, contains two
of the randomly selected points. Thus their distance does not exceed .1
inch.

R

2.4 Proof by Induction

The logical validity of the method of proof by induction is intimately bound
up with the construction of the natural numbers, with ordinal arithmetic,
and with the so-called well ordering principle (see Section 6.1). However
the topic fits naturally into the present chapter. So we shall present and
llustrate the method, and worry about its logical foundations later on. As
with any good idea in mathematics, we shall be able to make it intuitively
clear that the method is a valid and useful one. So no confusion should
result.

Consider a statement P(n) about the natural numbers. For example,
the statement might be “The quantity n? + 5n + 6 is always even,” 1f we
wish to prove this statement, we might proceed as follows:

1. Prove the statement P(1).
2. Prove that P(k) = P(k+1) for every k € {1,2,...}.

Let us apply the syllogism modus ponendo ponens from the end of Section
1.5 to determine what we will have accomplished. We know P(1) and,
from (2) with k = 1, that P(1) = P(2). We may therefore conclude P(2).
Now (2) with k = 2 says that P(2) = P(3). We may then conclude P(3).
Continuing in this fashion, we may establish P(n) for every natural number
n.

Notice that this reasoning applies to any statement P(n) for which we
can establish (1) and (2) above. Thus (1) and (2) taken together constitute
a method of proof. It is a method of establishing a statement P(n) for every
patural number n. The method is known as proof by induction.
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Example 2.8

Let us use the method of induction to prove that, for every natural number
n, the number n? + 5n + 6 is even.

Solution: Our statement P(n) is
The number n? + 5n + 6 is even.

[Note: Explicitly identifying P(n) is more than a formality, as Exercise
2.16 shows. Always record carefully what P(n) is before proceeding.]
We now proceed in two steps:

P(1) is true. When n =1 then
n?+5n+6=12+5-146=12

and this is certainly even. We have verified P(1).

P(n) = P(n+1). We are proving an implication in this step. We assume
P(n) and use it to establish P(n + 1). Thus we are assuming that

n®>4+5n+6=2m
for some natural number m. Then, to check P(n + 1), we calculate

(n+1)2+5(n+1)+6 = [n?+2n+ 1]+ [5n+ 5]+ 6
= [n® +5n + 6] + [2n + 6]
=2m+ [2n + 6].

Notice that in the last step we have used our hypothesis that n? +5n + 6
is even, that is that n% 4 5n + 6 = 2m. Now the last line may be rewritten
as

2(m+n+3).
Thus we see that (n+1)%+5(n+1)+6 is twice the natural number m+n+3.
In other words, {(n +1)2 +5(n + 1) + 6 is even. But that is the assertion
P(n+1).

In summary, assuming the assertion P(n), we have established the as-
sertion P(n 4+ 1). That completes Step (2) of the method of induction. We
conclude that P(n) is true for every n.

Here is another example to illustrate the method of induction.

PROPOSITION 2.11
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If n is any natural number then

1

PROOF The statement P(n) is
+1
1+2+-'-+n=————n(n2 )-

Now let us follow the method of induction closely.

P(1) is true. The statement P(1) is

This is plainly true.

P(n) = P(n + 1). We are proving an implication in this step. We assume
P(n) and use it to establish P(n+ 1). Thus we are assuming that

_ n(n-—i—l)‘

142+ +n - ()
Let us add the quantity (n + 1) to both sides of (*). We obtain
1
1424 4nt(ntl) = E(n—;-———)—}—(’ﬂ-i-l).

The left side of this last equation is exactly the left side of P(n + 1) that
we are trying to establish. That is the motivation for our last step.
Now the right hand side may be rewritten as

n(n+1)+2(n+1)
5 .

This simplifies to
m+1)(n+2)
g
In conclusion, we have established that
1424 +n+(n+1)= %2_)
This is the statement P(n + 1).
Assuming the validity of P(n), we have proved the validity of P(n + 1).

That completes the second step of the method of induction and establishes
P(n) foralln. |
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Some problems are formulated in such a way that it is convenient to begin
the induction with some value of n other than n = 1. The next example
illustrates this notion:

Example 2.9
Let us prove that, for n > 4, we have the inequality

3" > 2n? 4 3n.
Solution: The statement P(n) is
3" > 2n% + 3n.

P(4) is true. Observe that the inequality is false for n = 1,2, 3. However
for n =4 it is certainly the case that

3*>2.4243.4.

P(n) = P(n+ 1). Now assume that P(n) has been established and let us
use it to prove P(n + 1). We are hypothesizing that

3" > 2n? + 3n.
Multiplying both sides by 3 gives
3.3" > 3(2n? + 3n)

or
3"t > 6n® + 9n.
But now we have
3"t > 6n? + 9n
= 2(n® + 2n+n) + (4n’® + 3n)
>2(n®+2n+1)+ (3n +3)
=2(n+1)*+3(n+1).

This inequality is just P(n+ 1), as we wished to establish. That completes
step two of the induction, and therefore completes the proof. [l

We conclude this section by mentioning an alternative form of the induc-
tion paradigm which is sometimes called complete mathematical induction
or strong mathematical induction.
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Complete Mathematical Induction: Let P be a function on the
natural numbers. If

1. P(1);

2. [P(j) for all j < n] = P(n+ 1) for every
natural number n;

then P(n) is true for every n.

It turns out that the complete induction principle is logically equivalent
to the ordinary induction principle enunciated at the outset of this sec-
tion. But in some instances strong induction is the more useful tool. An
alternative terminology for complete induction is “the set formulation of
induction”.

Complete induction is sometimes more convenient, or more natural, to
use than ordinary induction; it finds particular use in abstract algebra.
Complete induction also is a simple instance of transfinite induction, which
we shall discuss later.

Example 2.10
Theorem: Every integer greater than 1 is either prime or the product of

primes. [Here a prime number is an integer whose only factors are 1 and
itself.]

Proof: We will use strong induction, just to illustrate the idea. For con-
venience we begin the induction process at the index 2 rather than at 1.

Let P(n) be the assertion “Either n is prime or n is the product of
primes.” Then P(2) is plainly true since 2 is the first prime. Now assume
that P(k) is true for 2 < k < n and consider P(n+1). If n+1 is prime then
we are done. If n+ 1 is not prime then n+ 1 factors as n+1 = k- £, where
k, ¢ are integers less than n + 1, but at least 2. By the strong inductive
hypothesis, each of k and ¢ factors as a product of primes (or is itself a
prime). Thus n + 1 factors as a product of primes.

The complete induction is done, and the proof is complete. 0

2.5 Other Methods of Proof

We give here a number of examples that illustrate proof techniques other
than direct proof, proof by contradiction, and induction.

Y
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Counting Arguments

Example 2.11
Show that if there are 23 people in a room then the odds are better than
even that two of them have the same birthday.

Proof: The best strategy is to calculate the odds that no two of the people
have the same birthday, and then to take complements.

Let us label the people p1,p2,...,p23. Then, assuming that none of the
p; have the same birthday, we see that p; can have his birthday on any
of the 365 days in the year, p; can then have his birthday on any of the
remaining 364 days, ps can have his birthday on any of the remaining 363
days, and so forth. So the number of different ways that these 23 people
can all have different birthdays is

365364 -363---345 - 344 - 343.

On the other hand, the number of ways that birthdays could be distributed
(with no restrictions) among 23 people is

365 - 365 - 365 - - - 365 = 365%°.

23 times

Thus the probability that these 23 people all have different birthdays is
_365-364-363.--343
- 36523

A quick calculation with a pocket calculator shows that p ~ 0.4927 < .5.
That is the desired result.

Example 2.12

Show that if there are six people in a room then either three of them know
each other or three of them do not know each other. [Here three people
know each other if each of the three pairs has met. Three people do not
know each other if each of the three pairs has not met.]

Proof: The tedious way to do this problem is to write out all possible
“acquaintance assignments” for fifteen people.

We now describe a more efficient, and more satisfying, strategy. Call one
of the people Bob. There are five others. Either Bob knows three of them,
or he does not know three of them.

Sy nsRT Ty
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Say that Bob knows three of the others. If any two of those three are
acquainted, then those two and Bob form a mutually acquainted threesome.
§i If no two of those three know each other, then those three are a mutually
: unacquainted threesome.

Now suppose that Bob does not know three of the others. If any two
i of those three are unacquainted, then those two and Bob form an unac-
quainted threesome. If all pairs among the three are instead acquainted,
then those three form a mutually acquainted threesome.

We have covered all possibilities, and in every instance come up either
with a mutually acquainted threesome or a mutually unacquainted three-
some. That ends the proof.

It may be worth knowing that five people are insufficient to guarantee
either a mutually acquainted threesome or a mutually unacquainted three-
some. We leave it to the reader to provide a suitable counterexample. It
is quite difficult to determine the minimal number of people to solve the
problem when “threesome” is replaced by “foursome”. When “foursome” is
iE replaced by five people, the problem is considered to be grossly intractable.
This problem is a simple example from the mathematical subject known
as Ramsey theory.

I

Example 2.13
Jill is dealt a poker hand of five cards from a standard deck of 52. What

is the probability that she holds four of a kind?

Proof: If the hand holds four aces, then the fifth card is any one of the
other 48 cards. If the hand holds four kings, then the fifth card is any one
of the other 48 cards. And so forth. So there are a total of

13 x 48 = 624
possible hands with four of a kind. The total number of possible five-card
hands is e
(5 ) = 2598960 .
Therefore the probability of holding four of a kind is
624
P= m = (.00024 .

Example 2.14
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Let us show that there exist irrational numbers a and b such that ab is
rational.

Let o = 2 and 8 = 2. If o is rational then we are done, using a = &
and b = 3. If & is irrational, then observe that

Thus,

o = VA = g2 = [#/2]° =2,

with @ = & and b = +/2 we have found two irrational numbers a, b

such that a® = 2 is rational.

Exercises

2.1
2.2

2.3

24
2.5
2.6

Prove that the product of two odd natural numbers must be odd.

Prove that if n is an even natural number and if m is any natural number
then n - m must be even.

Prove that the sum of the squares of the first n natural numbers is equal

to
23 +3n%+n

—

Prove that the sum of the first & even natural numbers is K+ k.

Prove that the sum of the first & odd natural numbers is k*.

Prove that if n red letters and n blue letters are distributed among n mail-
boxes then either some mailbox contains at least two red letters or some
mailbox contains at least two blue letters or else some mailbox contains at
least one red and one blue letter.

Prove that if m is a power of 3 and n is a power of 3 then m + n is never
a power of 3.

What is special about the number 3 in Exercise 2.7? What other natural
numbers can be used in its place?

Imitate the proof of Pythagoras’s theorem to show that the number 5 does
not have a rational square root.

Prove that if n is a natural number and if n has a rational square root then
in fact the square root of 1 is an integer.

Complete this sketch to obtain an alternative proof that the number 2 does
not have a rational square root:

(a) Take it for granted that it is known that each positive integer has
one and only one factorization into prime factors (a prime number
is a positive integer, greater than 1, that can be divided evenly only
by 1 and itself).




