Chapter 1

The Real Number System

1.0 Introduction

This chapter introduces the basic mathematical object that underlies all of
analysis: the real number system. No doubt you are already familiar with
real numbers from your previous study of calculus, at least in an intuitive
working sense. Here we will explore the real numbers more deeply. Qur study
begins with the Greeks® discovery of irrational quantities. The early Greek
conception of number was based on whole numbers and quantities derived
directly as the ratio of whole numbers. Since irrational quantities cannot be
described in this concrete way, they were not regarded as proper numbers by
the Greeks. For a long time irrationals, as their name indicates, occupied an
anomalous status as phantom quantities scattered among the true “rational”
numbers. It was not until the nineteenth century that a precise and logically
sound meaning for the irrationals as numbers was developed by constructing
the set of real numbers (rationals and irrationals) directly from the rational
numbers.

In this construction the real numbers are endowed with a special property
called completeness, which is the basis for all limit processes in calculus. In
Section 1.2 we explore this construction and some of the consequences of this
special completeness property. Following this, we examine the set of axioms
that underlie the real number system and see how the common operations
with real numbers are consequences of these axioms. Finally, in Section 1.4
the completeness of the real numbers is used to prove the important Heine-
Borel theorem, which forms the foundation for several key results in the theory
of calculus.

Mathematics evolves by abstracting and generalizing the properties and
structures that it uncovers in the course of investigating particular mathemat-
ical objects. Perhaps no other object has inspired more mathematics in this
way than the real number system. Each of the major branches of mathemat-
ics can trace its roots back to the fundamental example of the real numbers.
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In analysis the completeness property of real numbers and the
notions of limit are the primary motivating ideas. In algebra th
of addition and multiplication of real numbers forms the centra]
The fundamental concept of orders of infinity in logic arose from
about the size of the set of real numbers. Finally, the branch of topolog,
originated in the study of open and closed sets of real numbers whose sign;¢.
icance was highlighted by the Heine-Borel theorem. Thus, this single object,
the real number system, has been the primary inspiration and guiding hand
in the development of a large part of mathematics. A thorough study of the
real numbers is indispensable for all serious mathematics students.

Foundational problems such as providing clear and precise definitiong and
rules for operation are often misunderstood as merely pedantic eXercises,
When first encountering such material we may tend to rely on our origina)
intuitions of the subject, ignoring the difficult definitions and constructiops,
But good definitions need to be taken seriously, for they are actually meapt
to reshape our intuitions. It is with these newly reshaped tools that we are
able to resolve the subtle confusions in our earlier understanding. Further-
more, these definitions and constructions form the foundation for exploration
in areas where our earlier notions would have had no meaning.

At first, the new definitions and constructions seem abstract and con-
trived. However, with work they become more concrete and new, very keen
intuitions develop. At its best, a thorough foundational study can be a truly
enlightening experience. It can profoundly simplify and unify a subject, open-
ing the way to powerful generalizations. In mathematics there is perhaps no

better or more important foundational study than that of the real number
System.
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1.1 Irrational Numbers

The Greeks were the first civilization to view mathematics as an abstract
deductive system. Earlier cultures had considered mathematics primarily
as a tool kit of techniques to aid practical computations in activities such as
navigation, construction, and commerce. The Greeks’ interest in mathematics
went beyond these practical applications to a deep concern for the logical
integrity and consistency of arguments. This interest was rooted in a deep,
almost religious belief in the power of pure rational thought to enlighten
the mind. By training the mind logically, particularly through the study
of mathematics, mortals could glimpse the underlying rational design of the
universe and learn to lead & moral and just life. The following words of

Proclus, a chronicler of early Greek mathematics, epitomize the lofty role of
mathematics in Greek culture.

This, therefore is mathematics;

she reminds you of the invisible
form of the soul; she gives life to

her own discoveries; she awakens
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t:be'mind and purifies the intellect; she brings light to our intrin-
sic Ldela,s; she abolishes oblivion and ignorance which are ours by
birth.

The Pythagoreans

The elevation of mathematics to this preeminent status was the work of a
famous school of philosophers known as the Pythagoreans, which arose in
Greece about the sixth century BCE under the leadership of the mathemati-
cian Pythagoras. They lived as a secretive communal society, sharing their
worldly goods and following strict dietary codes. As scholars the Pythagore-
ans were chiefly concerned with their studies, which they organized into four
main branches of learning: arithmetica (number theory), harmonia (music),
geometria (geometry), and astrologia (astronomy).

The Pythagoreans were motivated by the belief that through pure rational
thought they could uncover and understand the design of the universe and
how it worked. A basic tenet of this belief system was that numbers, by which
they meant the positive whole numbers or the natural numbers, formed the
key to understanding in all fields of knowledge. (We will use N to denote the
natural numbers and Z to denote the set of all integers.) In the words of a
famous follower, Philolaus:

All things which can be known have number; for it is not possible
that without number anything can be either conceived or known.?

The central role assigned to numbers by the Pythagoreans was mingled with
mystical tendencies and led to a great deal of numerology. It was believed that
objects could be represented by numbers and that the relationships between
the numbers revealed truths about the relationships between the correspond-

ing objects.

The number one is the generator of numbers, the number of rea-
son; two is the first even or female number, the number of opinion;
three is the first true male number, the number of harmony, being
composed of unity and diversity; four is the number of justice or
retribution, indicating the squaring of accounts; five is the num-
ber of marriage, the union of male and female numbers; and six

is the number of creation.?

For the Pythagoreans ratios of integers were the most important tool in the
study of these relationships and, thus, formed the unifying thread connecting

1Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Ox-

ford University Press, 1972), p. 24.
2Carl B. Boyer, A History of Mathematics (Princeton, N.J.: Princeton University Press,

1985), p. 60.
3Boyer, p. 57.
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all the areas of learning. In music, fundamental integra] ratios unde
the theory of harmony were studied. These ideas were applied to g
in which it was believed that the motions of heavenly bodies were gg
by the same ratios, and students ostensibly learned to hear “the music
spheres.” :
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In the same way it was believed that the basic truths of geometry coylq
be revealed and understood through numbers and their ratios, A major tene
of this system was that any two line segments were commensurable (eyey]
measurable using a common unit). That is, for any two line segments jt wai
believed possible to find a unit small enough so that each segment would b
an exact integral multiple of that unit.
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Figure 1.1.1. Two commensurable line segments.

Ironically, the Pythagoreans, themselves, discovered the fallacy in this
belief. Certain familiar lengths such as the side of a square and its diagonal are
inherently incommensurable and, hence, cannot be evenly measured by a
common unit no matter how small. The existence of incommensurable lengths
was a mysterious and incomprehensible fact to the Pythagoreans. Since the
ratios between such lengths could not be described by whole numbers, they
were called aloges meaning “without word” or inexpressible. This discovery
implied that whole numbers and their ratios were in some way inadequate
or too incomplete to describe geometric lengths. Obviously this was a major
setback for a philosophy that had postulated number as the central key to all
understanding. The problem was so embarrassing that according to legend
the discoverer was thrown overboard at sea and members were forbidden to
reveal the secret of the inexpressible quantities.*

Today we may find some of the Pythagoreans’ beliefs naive and super-
stitious, but we owe a great deal to these philosophers. They inspired some
of the basic principles of western culture: that nature is susceptible to sys-
tematic rational understanding, and that moral conduct and justice should
rest on logical reasoning. The four areas of learning that the Pythagoreans
outlined were the original four “liberal arts” known as the Quadrivium. In
the Middle Ages three more subjects, logic, rhetoric, and grammar, called
the Trivium, were added. In the West these seven liberal arts have for cen-
turies been considered the foundation of all learning. Notice the central r‘_DI}‘:
of mathematics in these liberal studies. Even the word mathematics, Whic
means “that which is learned”, is attributed to Pythagoras.

; ; ; count
“Ernest Sondheimer and Alan Rogerson, Numbers and Infinity: A It{zstorna‘:;:l3 Ac
of Mathematical Concepts (Cambridge: Cambridge University Press, 1981), p- 43
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Irrational Numbers

Let’s examine how the problem of incommensurable lengths arose. Suppose
for a moment that the side of a square and its diagonal were commensurable
(Figure 1.1.2). This would mean there exists a unit small enough so that the
side would be some integer multiple of this unit, say NV, and the diagonal
would be another whole multiple of the same unit, say M.

N

Figure 1.1.2. Can the diagonal and side of a square be commensurable?

By the Pythagorean theorem these numbers must satisfy N2 + N2 = M2,
That is, 2N2% = M? or
MZ
‘—N'?.
This last equality would then imply that /2 = M/N for integers M and N.
More specifically, any number that can be expressed as such a quotient of two
integers with N # 0 is called a rational number. We will denote the set of
all rational numbers by Q. Using the Pythagorean theorem we see that if the
diagonal and side of a square are commensurable, then /2 must be rational.
But the following argument shows that /2 is irrational, that is V2 cannot
be expressed as the ratio of two integers.

Di==

Theorem 1.1.1. There are no integers M and N such that /2= M/N.

Proor (By contradiction.) Suppose that v2 = M/N for some integers M
and N. Since any fraction can be expressed in lowest terms by dividing out
common factors, we may further assume thet M and N have no common
divisors. We will obtain a contradiction by showing that M and N must
both be divisible by 2.

If V2 = M/N, we may write 2 = M?/N? and so

aN? = M2

Since N? is an integer, this implies that M 2 is divisible by 2 (i.e., that it is
an even integer). What about M? If M were odd, M 2 would also be odd;
thus, M must be even. We conclude that if M 2 is divisible by 2, M must be
divisible by 2. So we may write M = 2P for some integer P and substitute
for M in the foregoing equation:

aN? = (2P)?
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or, equivalently,
N2 =2P2

The last equality says that N? is divisible by 2; hence, NV is als, divisip)
2. We have shown that M and N have a common factor, 2, contrary tOe
original choice of M and N. Therefore, there can be no integers M andou:
with vZ = M/N. R i

The Greeks were masters at discovering inconsistencies buried i stat
ments, as is beautifully illustrated in the dialogues of Socrates. They hon:g
the technique of proof by contradiction, known as reductio ad absurdum, to 5
fine art. The preceding argument shows that if a rational expression foy V3
existed, it could not have been in lowest terms. Since any ratio of integers cay
always be reduced to lowest terms, this must mean that no such expression
can exist. It is considered one of the most beautiful examples of proof by
contradiction in elementary mathematics. In the remainder of this section we
look at several other famous proofs by contradiction.

by

The Fundamental Theorem of Arithmetic



