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Evan Randles

1 Introduction

This article is about the diagram on the title page. Our goal is to explore
the connection between semigroups, self-adjoint operators, Dirichlet forms and
Hunt Processes. This connection is the idea behind the probabilistic/diffusive
interpretation of the heat equation. Every arrow in the diagram is shown below
except for the dotted one, this is [6, Theorem 6.2.1]. A less general version can
be found in [1].

2 Functional Analysis

The aim of this section is to explore the interplay between semigroups, self-
adjoint operators and Dirichlet forms. Our first goal is to establish the con-
nection between semigroups and closed, densely defined operators on Banach
spaces; this is the Hille-Yosida Theorem. Our presentation of the Hille-Yosida
Theorem comprises the first two subsections below and, to some extent, fol-
lows [11]. After this, we move into the setting of Hilbert spaces wherein we
will prove a refinement of the Hille-Yosida theorem for self-adjoint operators
and then show that there is a one to one correspondence between closed sym-
metric forms and self-adjoint operators. Finally, we discuss Dirichlet forms and
Markovian semigroups.

2.1 Semigroups and their infinitesimal generators

In this subsection and the next, our setting is a Banach space X with norm | -||.
Unless otherwise stated, convergence means strong convergence. Before intro-
ducing semigroups and their generators, we recall a few standard definitions,
ct. [7,11].

Definition 1. Suppose that X is a Banach space and D(A) € X is a linear
subspace of X. By a linear operator A on X with domain D(A), we mean a
function A : D(A) — X that is C-linear. We shall say that A is densely defined
if D(A) is a dense subset of X with respect to the norm topology.

Definition 2 (Closed operator). A linear operator C' on X with domain D(C')
is said to be closed if for all {xn}, S D(C) such that

Ty — T and Cr, =y
as n — o0, we have
x € D(C) and Cx=y.

We shall denote by B(X) the set of (everywhere defined) bounded linear opera-
tors on X and, as usual, I € B(X) is the identity operator. The operator norm
on B(X) is denoted by | - [|op-
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Definition 3 (Spectrum and resolvent set). Suppose that A is a linear operator
with domain D(A). The resolvent set of A is the set p(A) consisting of all A € C
for which (\I — A) : D(A) — X s bijective and such that (\ — A)~! € B(X).
The spectrum of A denoted by o(A) is the complement of the resolvent set.

Definition 4 (Operator extension). Suppose A and B are linear operators on
X with respective domains D(A) and D(B). We say that B is an extension of
A and write A < B if D(A) < D(B) and Bx = Az for all x € D(A).

Definition 5 (Semigroup). A family {T;}i=0 of bounded and everywhere defined
operators on X 1is called a semigroup if

i. Ty =1,

1. for allt,s =0,
TT, =TTy = Tt+s

and

1. for each x € X,
lim | Tz — x| = 0.
t10

Property ii above is often referred to as the semigroup property. In the literature,
property iii is not ubiquitously included in the definition of semigroup. When it
is omitted, our definition coincides with that of a strongly continuous semigroup
[6]. We shall not have use for such a distinction.

Definition 6 (Infinitesimal generator of a semigroup). Let {T;};>0 be a semi-
group on X. Define

1
Ay = ;(Tt -1I)
fort >0,
D(A) = {x €X: lti%lAt:zz e:z:ists}

and put
Az = 1tilr61 Arx whenever x € D(A).

The map A : D(A) — X is called the infinitesimal generator of the semigroup
{Tt}e=0.

Remark 1. The limit defining A is to be understood in the sense of the norm

topology on X. More explicitly, for each x € D(A), there exists Ax € X for

which

Tix —x
t

— Az|| = 0.

lim | Az — Az| = lim
t10 t0

Because A; is a linear operator for each t > 0 it follows that A is a linear
operator with domain D(A).
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Proposition 1 (Basic semigroup facts). Let {T;}i=0 be a semigroup on X.
1. There are constants C' =1 and v = 0 such that
|Tillop < Ce™
for allt = 0.
2. For each x € X, the map t — Tyx from [0,0) into X is continuous.

Proof. 1. First we establish the existence of C'. Suppose that for some sequence
of non-negative real numbers ¢,, — 0 we have |}, |op — 0. Then by the uniform
boundedness principle, Fact 9 of the appendix, there is x € X for which

lim [T, 2] = co.

This cannot be true in view of Property ¢ of Definition 5. Consequently, there
must be C > 1 and § > 0 for which

ITelop < © (1)

for all ¢ € [0, §]. Using the semigroup property, it follows that for any ¢ = 0 and
natural number n,
T = Tnt/n = (Tt/n)n

and therefore
1 Telop < | T2/mlop- (2)

So for any ¢ € [0,0) choose a natural number n for which (n —1)0 < t < nd.
Combining (1) and (2) we have

ITelop < ITyyully, < C™ = CC™H < OCH = Ce*

where v = (log(C))/é = 0. This proves the first part of the proposition.
For the second, observe that for any 2 € X, ¢t € [0,00) and h > 0,

[Tyne - Tial = |[T(Tha — 2)] < C|The — x|

where we have used the semigroup property. By an appeal to Property #ii. of
Definition 5, the proof is complete. O

Definition 7. Suppose that {T;}i=0 is a semigroup on X. In view of Propo-
sition 1, let v = 0 be the minimal such constant for which conclusion 1 of the
proposition holds. We then say that {T;} is vy-contractive.

We say that {T}} is a contraction semigroup if it is 0-contractive and C = 1.
That is, {T}} is a contraction semigroup if

ITilop <1 forallt = 0.
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To introduce the next example, we recall a standard definition from linear al-
gebra: For A € B(X), the exponential of A is the operator e?* = exp(4) € B(X)

defined by
0 An
A _
- ur

The defining series is the limit of its corresponding partial sums in sense of the
operator norm.

Example 1. If A e B(X),
0] tn
Tt = etA = Z — A" (3)

defines a semigroup with infinitesimal generator A where D(A) = X. It is easily
shown that
lim | T} — 1I|op = 4
i | 7; ~ Iop = 0 (4)

from which Property iii of Definition 5 follows trivially. The constants C' and
v of the above proposition are 1 and ||A|,p respectively.

The above example comprises the class of semigroups for which (4) holds, c.f. [7,
p. 66]. As we shall see, (4) fails precisely when D(A) # X. We can however
say the following:

Proposition 2 (Properties of semigroups and their infinitesimal generators).
Let {T;}4=0 be a semigroup on X with infinitesimal generator A.

1. D(A) is a dense linear subspace of X.
2. A is a closed operator.

3. For each x € D(A),

%Tt‘f = ATt(E = TtAfE
Proof. Tt is clear the D(A) is a linear subspace of X. The rest of this proof
relies on one crucial idea: Averages play well with derivatives. For z € X and
t > 0 define

1 [t

Miyx = — J Tsxds

t Jo
where the integral exists in the sense of the norm-limit of Riemann sums. Note
that M;x € X. As in the standard real-valued construction of the Riemann
integral, the same arguments show that M; € B(X) and |M¢|op < sup,<; [T/ op
for all ¢ > 0. Thus by Proposition 1,

[Mi]op < Ce™*

where C > 1 and v > 0. In fact, most of the basic properties of the Riemann
integral hold in this setting and are verified by precisely the same arguments;
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we will use them abundantly and without explicit mention. For the precise
statements the reader is encouraged to see [4, pps 3. 21-22]. With this in mind,

[Miz -] = —

11t t
J. T,xds —J xds
0 0

4
1 t
f (Tsx — x)ds
0

t

N

t
-sup |Tsz — z|.
t o<t

In view of Property iii of Definition 5 this proves that for any z € X,

1;%1 Mix = x. (5)

We claim that for x € X and t,e > 0,
AM.x = A M. (6)

To see this observe that

t+e t t+e €
J Texds — f T,xds = J- Toxds — J Tsxds
€ t

0 0
and so
t t t
etA Mz = (T.— I)J T.xds = f T.T,xds — J T.xds
0 0 0
t t t4e ¢
= J Tetsxds — J Tsxds = J Tsxds — J Tsxds
0 0 € 0
t+e € € €
= J- Texds — f T,xds = J Ty T,xds — J- Tsxds
¢ 0 0 0

= (Tt — I)J Tsxds = tGAtME.
0

This proves (6). Let us point out that in the above computation the operator
T. was passed under the integral sign. This operation is justified whenever the
operator is closed, see [5, Exercise 7.5.13]. Now for fixed € > 0, (5) and (6) show
that

lim A;M.x = lim A M;x = A.x

t10 £l0

and so M.x € D(A) and
AM.x = A.x. (7)

Thus any = € X is an accumulation point of the collection {Mz}i~o S D(A).
Hence, D(A) is dense in X.
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Before demonstrating that A is a closed operator we make an observation.
For any t,s > 0, it is clear that M; and A; commute. We observe that for any
x € D(A), Myx € D(A) and so

AMtI = 11?(’)1 AthIE = hfgl MtAsl’ = MtAI'

Thus for each t > 0, A and M; commute.
Now we show that A is closed. Take {x,}, < D(A) for which

Ty — T and Az, —y
as n — 0. Using (7) and the observation made in the previous paragraph,

Asx = lim Agz, = lim AMgx, = lim M Az, = My
n—o0 n—o0 n—0oo0
for each s > 0. Thus by (5), lims Asx = y which proves that z € D(A) and
Ax =y.
We now prove item 3. First observe that for x € D(A),

d o Tiopxe —Tix . Ty —x .

ST = %%MTt = Ttl}y&}hT _ l}g%Ah:c = T, Ax
where we have used the fact that T; € B(X). It remains to show that ATz =
T; Az for x € D(A) and ¢t > 0. This is easy to see; it follows by precisely the same
argument we used to show that My Az = AM;x for x € D(A). The proposition
is proved. O

Definition 8 (Resolvent of a semigroup). Let {T;}: be a y-contractive semigroup
on X. For x € X and X € C for which Re A > v put

0

Ryz = J e MTxdt. (8)
0

For each such A\, Ry is called a resolvent (or resolvent operator) of the semigroup

{T:}.

The above integral is to be understood as an X-valued (improper) Riemann
integral. Formally, it is the Laplace transform of the semigroup {7T;}. The
following proposition deals, in particular, with its existence.

Proposition 3. Suppose that {T}}; is a vy-contractive semigroup. For each A
for which Re(A\) > v, Ry € B(X), D(A) = Rx(X) and Ry = (A — A)~L.

Proof. For any x € X and X\ with Re()\) > ~,

|Bxz| =

0 0
J e_’\tTtxdt‘ < f e~ M| dt
0 0

N

o0
2 f e RO T3 |, dt

N

o0
Hx”C’J e~ Re)—Ntgp — || < oo
0

Re(A =)
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where we have used Conclusion 1. of Proposition 1. Thus Ry € B(X).
Now for z € X and e > 0, the semigroup property guarantees that

o0 a0
A Ryx = J e_’\tTHExdt—f e MT,xdt
0 0

o0 0
f e MTadt — J e MT,xdt
€ 0

= (e —1)Ryx — e)‘éf e MTyxdt
0

= (M —1)Ryz — e eM oz + eAef (1 — )T zdt.
0

By the same argument we used to show that M;x — = as t — 0, one sees that

e)\e €
lim f (1—eMTyxdt = 0
el0 € 0

and therefore
lifgl A.Ryx = ARz — .

This proves that Ryz € D(A) and
(M — A)Ryz = z.

Now, for any z € D(A) and A for which Re(\) > 7,

o0
R\(M[ — Az = J e MTy(\x — Az)dt
0

0 0
)\J e MTadt — J e M, Axdt
0 0

A e MTxdt — e M Tyxdt

= e*)‘OTOx =z
where we used Property 3. of Proposition 2 and partial integration. Therefore
D(A) = Ry\(X) and Ry=(\— A
as desired. 0

An immediate corollary is the following:

Corollary 1. Suppose that {Ti}; is a ~y-contractive semigroup on X. If A is
the infinitesimal generator of {T;} then

(7,0) < p(A).
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Remark 2. The notion of a resolvent class of operators, {Rx} € B(X) exists
abstractly in its own right, i.e. it is defined without explicit use of semigroups.
With it, one can define a corresponding infinitesimal generator A. This is the
tack taken in [6] in the Hilbert space setting. Under certain conditions, it is
seen that the infinitesimal generator of a resolvent class {Ry} is the infinitesimal
generator of a semigroup {T3} on X and {Ryx} and {I}} are then related via (8).
This equivalence, and that given by the Hille-Yosida theorem is summarized in

the following diagram:
T;

A<———= R,

2.2 The Hille-Yosida Theorem

In the previous subsection, we started with a semigroup and derived from it a
densely defined closed linear operator which satisfied some certain nice proper-
ties. In the present subsection we determine that exact class of densely defined
linear operators that are generators of semigroups. This characterization, known
as the Hille-Yosida Theorem, completes the first part of our diagram:

etA

Hille-Yosida

A

Theorem 1 (Hille-Yosida). A closed, densely defined linear operator A on a
Banach space X is the infinitesimal generator of a semigroup {T;} if and only
if there are constants C' and ~y such that for every X > v, (\I — A) : D(A) > X
is invertible with

IAL = A) " op < C(A=7)"™ (9)
for all m e N.

Proof. Tf A is the infinitesimal generator of a semigroup {T}}, we demonstrated
in Propositions 1 and 3 that there are constants C' > 1 and v > 0 such that for
all A > v, (AI — A) is invertible and (9) holds for m = 1. We also found that
for any such A\ and z € X,

Q0

(M —A) 'z =Ryx = J e MTyadt.

0
Using standard properties of the Laplace transform and the semigroup property
it follows immediately that

1 0 1 A\
m m—1_—At
Vo= 7( t e MTixdt
m—1)! L
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for all m € N. Now by partial integration we have that
C *© (=)
RV oy < ——— tm e =N = C(N — )™
H AHP (m_l)'L € ( ’}/)

from which (9) follows.
For the converse, set

In this notation (9) becomes
15(€)™ lop < C(1 =)™ (10)

for all m € N and for all 0 < ¢ < (1/). Moreover the hypothesis guarantees
that

Se)(I —eld)z =2z (11)
for all z € D(A) and
(I —€eA)S(e)x == (12)
for all z € X whenever 0 < € < (1/7). Rearranging things a bit we see that
161%1 S(e)x == (13)

for all z € D(A). Note however that estimate (10) guarantees that |S(e€)op < C
for all sufficiently small ¢ and so by using the fact that D(A) is dense in X we
may immediately conclude that (13) holds for all x € X.
Observe that by (12), for each 0 < € < (1/v) the operator AS(e) € B(X)
and so we may define
T(t,e) = exp(tAS(e)).

Using (10) and (12) we may write
T, e)lop = [exp(=(t/€)I) exp((t/€)S(€))]op
i t"S(e)”

e—t/e
emn!

N

n=0

A
|
18
<
Q
=
|
oM
=

S

A

Q

@

”

e}
7 N\
~+
N———

_

N

We also observe that for €, > 0 and = € X,

Ttz —T(t,6)r — L %(T(S,E)T(t ~ 5,0)2)ds

L T(s,e)T(t —s,6)(S(e) —S(5))Axds.
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Appealing to (13) with Az in place of z, we see that by letting €,6 — 0,
|T(t,e)x — T(t,0)x| — 0.

We may therefore define
Tz = lifg T(t,€)x (15)

for all z € D(A). Using our estimate (14) and the hypothesis that D(A) is dense,
we deduce that this limit not only holds for all € X, but it holds uniformly for
t in any compact subset of [0, 00) for all x € X. Moreover we get the estimate

HTtHOP <Ce. (16)

It now follows from our definition of T'(¢, €) and the convergence indicated above
that T; forms a semigroup on X. Let B denote the closed, densely defined
infinitesimal generator of T;. It only remains to show that A = B.

To this end, we first establish the equality:

¢
Tix —x = J T, Axds (17)
0

for all z € D(A). Indeed, we know that for each ¢,e > 0 and x € D(A),

t t

T(s,e)AS(e)axds = .[o T(s,€)S(e)Axds (18)

T(t,e)x —x = J

0
where we have used (11) and (12) in interchanging A and S(e). Using (14), we
observe that for any s,e > 0 and y € X,

IT(s,€)S(e)y — Tyl IT(s,€)S(€)y = T(s, )yl + [T(s, €)y — Ty

<
< Cexp(ys/(1—ey))|S(e)y =yl + [T(s,€)y = Tsyl.

It follows from the above estimate and the fact that (15) holds uniformly on
compact sets that
lImT'(s,€)S(e)y = Tsy

el0
also holds uniformly for s in any compact subset of [0, 00). So for any z € D(A),

t

Um(T(t,€)x —x) = lim | T(s,€)S(e)Axds
el0 €l0 Jo

Tix —x
¢ t
= J lim T'(s,€)S(e)Axds = f TsAxds

0 €0 0

as claimed. Recalling (5) and the notation from Proposition 2 it follows that
for z € D(A),

Tt*iE
t

= Buxr.

1 t
Ar = lim My Az = lim - | TyAxds = lim
t10 tlo t Jo t10

10
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We have proved that A — B in the sense of operators. To complete the proof,
it remains to show that D(B) < D(A). To this end, select x € D(B). For
sufficiently large A we know that

(M —A):D(A) - X and (\]—B):D(B) > X
are invertible maps. For such a A put
y= (A —B)x

and
&= (N —A)"'ye D(A).

Using the fact that B extends A it follows that
M —=B)g=MN—-B)M —-A)ly=\ - AN - A)'y=y=(\ - B)x.

Since (A — B) is injective, x = & € D(A) whence D(B) < D(A) and the theorem
is proved. O

Notation 1. In light of the Hille-Yosida theorem and Example 1, for a densely
defined operator A, its corresponding semigroup is henceforth denoted by {e*};=.

The following theorem is the version of the Hille-Yosida theorem most often
treated in textbooks [1,5]. We do not state it as a corollary to the above
theorem because it makes use of said theorem’s proof.

Theorem 2 (Hille-Yosida for contraction semigroups). A closed, densely de-
fined operator A on a Banach space X is the infinitesimal generator of a con-
traction semigroup Ty(= e*4) if and only if

1
(0,00) € p(A) and ||[(M — A) " op < X for all A > 0. (19)

Proof. If A is the infinitesimal generator of a contraction semigroup T} = e*4,
the result follows immediately from Proposition 2, Proposition 3 and Corollary
1.

Conversely, if (19) is satisfied for a closed, densely defined operator A, it is
clear that (9) is satisfied for v = 0 and C' = 1. By an appeal to Theorem 1 there

is a semigroup 7} of which A is its infinitesimal generator. Moreover, by (16)
ITeflop < 1™ =1
and so T} is contractive. O

2.3 The Hille-Yosida theorem for self-adjoint operators

For the remainder of this article, we move into the setting of Hilbert spaces. In
what follows, H will denote a separable real Hilbert space with inner product

11
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(+,+). For a densely defined operator A : H — H with domain D(A) there is a
unique closed operator A* : H — H, called the adjoint of A, with domain

D(A*)={ye H :x — (Az,y) is continuous from D(A) to R}

such that
(Az,y) = (v, A%y)
for all z € D(A) and y € D(A*).
Definition 9 (Symmetric and self-adjoint). Let A and A* be as above.
e A is called symmetric if A c A*.
e A is called self-adjoint if A = A*.

We note that A is symmetric if and only if

(Axvy) = (.’E,Ay)

for all z,y € D(A). Also, a symmetric operator A is self-adjoint if and only
if D(A*) € D(A). Therefore everywhere defined symmetric operators are self-
adjoint.

Definition 10. Let B: H — H be densely defined with domain D(B).
1. If (Bz,z) 2 0 for all x € D(B), we call B non-negative and write B = 0.
2. If (Bzx,x) <0 for all x € D(B), we call B non-positive and write B < 0.
3. If (Bx,x) = a for all x € D(B), we write B > a.

The following facts are standard but a little too far afield for us. They can both
be found in [11]:

Fact 1. Let A: H — H be self-adjoint. Then A < 0 if and only if 0(A) <
(_0070]'

Fact 2. If T : H — H is self-adjoint and injective then the range of T is dense
in H and T~ is self-adjoint.

We now address that so-called Hille-Yosida theorem for self-adjoint operators, it
corresponds, partly, to [6, Lemmas 1.3.1 and 1.3.2]. The proof in [6] makes use of
the projection-valued measure form of the spectral theorem and its correspond-
ing functional calculus; the existence of such machinery is highly non-trivial.
Our proof avoids the spectral theorem all together. The two perspectives will
be connected after the proof.

Theorem 3 (Hille-Yosida for self-adjoint operators). A self-adjoint, non-positive
operator A on a Hilbert space H is the infinitesimal generator of contraction
semigroup {e!A} of self-adjoint operators. Conversely, the generator A a con-
traction semigroup {e!*} of self-adjoint operators is non-positive and self-adjoint.

12
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Proof. Let A be a self-adjoint, non-positive operator on H. In view of Fact 1,
(0,00) < p(A). Observe that for any A > 0 and y € D(A),

(M = A)y,y) = My, y) — (Ay,y) = My, y)

in view of the fact that A is non-positive. So for any A > 0 and = € X,
(M — A)~'z € D(A) and therefore

MO =) 22 = MO —A)te,(M - A) )
< (M =AM —A)te,(\ - A) L)
= (z.(\M - A)""2)
< 2l - A) " e

Of course, this implies that [(AI — A)™!|,, < A™! for all A > 0 whence (19) of
Theorem 2 is satisfied. An appeal to the theorem gives a contraction semigroup,
{et4} whose infinitesimal generator is A. Since semigroups are everywhere de-
fined, it remains to be shown that each e*4 is symmetric. To this end, we note
that Al — A is self-adjoint for each A > 0. An appeal to Fact 2, shows that
(M — A)~! is also self-adjoint for each A > 0 and so the operator S(¢) defined
in the proof of Theorem 1 is self-adjoint for each ¢ > 0. From (11) and (12), we
recall that for each x € D(A) and € > 0, S(e) Az = S(e) Az. Therefore, for each
x e D(A) and y € X,

(AS(e)y, x) = (S(e)y, Az) = (y, S(€)Az) = (y, AS(e)x).

Using the fact that AS(e) € B(X) and D(A) is a dense subset of X, it now
follows that
(AS(e)y, x) = (y, AS(e)x)

for all z,y € X and therefore AS(e) is self-adjoint for each ¢ > 0. From this

and in view of Example 1, it follows that for each ¢ > 0 and € > 0, the operator

T(t,¢) is self-adjoint and everywhere defined. Thus, for any z,y € X and ¢t > 0,
("z,y) = Tm(T(t, )z, y) = lim(, T(t, )y) = (. ¢"y)

and therefore e/ is indeed symmetric for each ¢ > 0.

For the converse direction, let {e/4} be a contraction semigroup of self-
adjoint operators. In view of Theorem 2, the infinitesimal generator A is densely
defined with (0,00) < p(A). Using Fact 1, we deduce that A is non-positive.
It remains to show that A is self-adjoint. Again, by a limiting argument and
the fact that each e* is self-adjoint it follows that R, defined by (8) is also
self-adjoint for all A > 0. By Proposition 3, (A — A)~! is therefore self-adjoint
for some A > 0, i.e. (A —A)~! is self-adjoint and injective. An appeal to Fact 2
guarantees that (A — A), which we know has domain D(A), is self-adjoint,
whence A is is self-adjoint. This proves the theorem. O

13
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Let’s discuss the framework under which the theorem is usually proven. We be-
gin by discussing the projection-valued measure version of the spectral theorem
for unbounded operators. We will take the results herein for granted, for details
see [7] or [11].

Fact 3 (Spectral Theorem). Let A be a self-adjoint operator on H. Then there
exists a unique projection-valued measure, E(-) from the Borel o-field on R such
that

0

A= J ME(N).
—0o0

This is called the spectral resolution of A. Also, the measure E is supported on

the spectrum of A in the sense that E(c(A)) = I and so

A f ME().
o(A)

Moreover, for any x,y € H, E, ,, = (E(-)z,y) is a Borel measure on R for which

D(A) = {x eH: foc NAE, .(\) < oo}
and -
(Az,y) — J_ NE,, (V) (20)
when x € D(A).

For a self-adjoint operator A on H and its projection valued measure E(-), one
can define for any Borel-measurable function f : R — C the operator

s = [ rapy (21
with domain
D) = fae s [ P00 <. 2)

For f(A) an equality analogous to (20) holds.
Fact 4. Let f(A) : D(f(A)) — H be as defined above. f(A) is self-adjoint if

and only if f is real valued.

Fact 5. For Borel-measurable functions f and g, let f(A) : D(f(A)) — H,
g(A) : D(g(A)) = H and (fg)(A) : D((fg)(A)) — H be as defined in (21) and
(22). Then

s = (7 o) ([ sapw)a

| tomaen:

= (f9)(A)x
for all z € D((fg)(A)).

14



2.3 The Hille-Yosida theorem for self-adjoint operators Evan Randles

Example 2. Let A be a non-positive self-adjoint operator and denote by E(-)
its projection valued measure. Note that o(A) € (—0,0]. For each t = 0 define
the self-adjoint operator,

© 0
eth = f erE(N) = f eME(N).
—0o0 —0o0
We note that for each t =0 and A <0, |e!*|> <1 and so for any x € H,
0 0
|16 = [ e PdEL0) < (Be(@)n,) = o <.
—o0

—Q0

Therefore D(etY) = H. Moreover, using the spectral calculus, it follows that
{et4} is a contraction semigroup on H.

Remark 3. The careful reader should notice that we have defined the symbol
et in two different ways: one via the Hille-Yosida theorem and one by means
of the spectral calculus. There is justice in the world; these constructions do
indeed agree. In fact, the proof of Hille-Yosida is significantly shorter in this
context [6].

Example 3. Let A be a non-positive self-adjoint operator with projection valued
measure E(-). Define the self-adjoint operator

V=A= JO V=XE()).

In view of the spectral calculus, for any x € D(A),

0 0
| WAL 0 = [ N0

— fl dE, .(\) + J_l (=A)dE; +(N)

—00

-1
< (B(-1,0)z,z) —&—f \)\|2dEw,w()\)
" —00
< z)? +J IAN2dE, . (\) < 0.

—00

Thus x € D(v/—A). Also for any x € D(A) observe that
( f; x/—TdE(A)) ( f; ﬁdE(A)) x
J_OOOO(M)QCZE(A)J;

VAV Az

— Jm AME(N)x = —Ax

—00

15



2.4 Symmetric forms and self-adjoint operators Evan Randles

where we have made use of Fact 5. For this reason we call A/—A the square
root of —A. It can be shown that this is the unique non-negative operator on H
whose square is —A. We also have that

(—AJJ, y) = (\/jx, \/jy)
for all x € D(A) and y € D(v/—A).

2.4 Symmetric forms and self-adjoint operators

In this subsection, our discussion turns to quadratic forms. Quadratic forms are
of fundamental importance to both partial differential equations and Markov
processes. In the case of Markov processes, the quadratic forms of interest
are called Dirichlet forms; they will be studied in the next subsection. In this
subsection, our goal is to show that there is a one-to-one correspondence be-
tween closed symmetric forms and non-positive self-adjoint operators. Again,
our setting is a real Hilbert space H with inner product (-, -).

Definition 11 (Symmetric form). Let D(Q) < H be a dense, linear subspace
of H. A symmetric form on H is a map @ : D(Q) x D(Q) — R that is

e R-Bilinear,
o Symmetric: Q(x,y) = Q(y,x) for all x € D(Q),
and

e Non-negative: Q(z,x) =0 for all x € D(Q).

We will call D(Q) the domain of Q.

Remark 4. For purposes of functional analysis, the requirements of the above
definition are rather strong. When put in the context of complex Hilbert spaces,
one can weaken the requirements and much of the theory still goes through [7,11].
We will not need this generality, but it’s nice to know it’s there.

Definition 12. A symmetric form @Q with domain D(Q) is said to be closed if
for any sequence {x,} < D(Q) such that

Tp > and Q(x, — xp, Ty —xk) — 0 as n,k — o0

we have
re D(Q) and Q(x, —x,2, —2) >0 as n — 0.

Lemma 1. Let Q be a closed symmetric form on H such that
Q(w,2) > ] for all z € D(Q). (23)

Then D(Q) is a Hilbert space in the inner product Q(-,-).

16



2.4 Symmetric forms and self-adjoint operators Evan Randles

Remark 5. The converse of Lemma 1 is also true.

Proof of lemma. Because @ is a form it satisfies all of the requirements of an
inner product except possibly positive definiteness. Positive definiteness follows
immediately from (23) (and the fact that D(Q) is a linear subspace of H). Thus
Q@ is an inner product on D(Q). The substance of this proof comes in showing
D(Q) is complete in the metric given by Q. To this end, let {z,,} < D(Q) be a
Cauchy sequence in D(Q) with respect to Q, i.e.,

Q(zy — T, Ty — xp) @8 N,k — 00.

By (23), {x,} must also be a Cauchy sequence in H and since H is a Hilbert
space, it has a limit in H, let’s call it z. Using the fact that @ is closed, it must
be true that x € D(Q) and that

lim Q(zy, — z, 2, —x) =0

whence D(Q) is complete. O

Lemma 2. Let Q be a closed symmetric form on H satisfying (23). Then there
exists a unique self-adjoint operator A on H such that

1L A>1,
2. D(A) < D(Q),
3. Q(z,y) = (z, Ay) for all x € D(Q) and y € D(A).

Proof. We first show the existence of A. For y € H consider the map D(Q) :
z — (z,y). By (23)

(@ 9)| < =)yl < lyl(Qz, )"

whence D(Q) : « — (z,y) is a continuous linear functional on the Hilbert space
D(Q) with inner product Q. In view of Lemma 1, an appeal to the so-called
Riesz representation theorem for Hilbert spaces, [5, Theorem 2, Section D.3],
gives a vector Ty € D(Q) such that

Q(z,Ty) = (z,y) for all x € D(Q).
Clearly, this produces a linear map T : H — D(Q) such that
Q(z,Ty) = (x,y) for all y € H and z € D(Q). (24)

Using 23, we see immediately that |T|,, < 1. If Ty = 0 for some y € H, the
above equation implies that (z,y) = 0 for all x € D(Q). But since @ is densely
defined, (z,y) = 0 for all © € H whence y = 0. Therefore T is injective. T is
also symmetric. To see this observe that

(Tz,y) = Q(Tz,Ty) = Q(Ty,Tx) = (Ty,z) = (x,Ty) (25)

17



2.4 Symmetric forms and self-adjoint operators Evan Randles

for all z,y € D(Q) where we have used the fact that Q(-,-) and (-,-) are both
symmetric. Now from Fact 2 it follows that the inverse of T, let’s call it
A: D(A) — H, is self-adjoint and densely defined. Necessarily, D(A) € D(Q)
which establishes 2. Although both domains are dense in H, they cannot be
equal unless T is surjective.

In view of (24) and our definition of A it follows that

Q(xay) = Q(ﬁvT(A)y) = (vay)

for z € D(Q) and y € D(A). This proves 3. To see 2., we observe that for any
z e D(A)
(z, Ax) = Q(z, T(A)z) = Q(, ) > |z

and therefore, A > 1.
It remains to show that A is unique. Suppose that B is another self-adjoint
operator satisfying conditions 1 — 3. If Bz = 0 for some z € D(B) then by 2.,

Qy,x) = (y, Bx) = 0 for all y € D(Q).

Using Lemma 1, we may conclude that = 0 whence B : D(B) — H is injective.
Let’s denote the inverse of B by T. Using Fact 2 again we see that D(T) is
dense in H. Using 1. it follows immediately that |T,, < 1. Since a densely
defined operator can be extended uniquely to all of H with the same bound,
we extended it and by an abuse of notation denote the extension by 7. Using
the fact that B is closed (it is self-adjoint), it follows quickly that BT = I. In
fact, this shows that B was surjective to begin with and extension was really
unnecessary.
Consequently, for each y € H, we have that

Q(vay) = ((E,y) = Q(x,Ty)

for all z € D(Q). Again by Lemma 1 we conclude that Ty = Ty for all y €
H which proves that D(B) = T(H) = T(H) = D(A) and that B = A as
desired. 0

Theorem 4. There is a one-to-one correspondence between the closed symmet-
ric forms on H and the non-positive self-adjoint operators on H. The corre-
spondence is given by

{Q(x,m: = (V=Azy/~Ax) (26)

D(Q) = D(v-A).

Proof. Let A be a non-positive self-adjoint operator on H and define @ by (26).
In view of Fact 4 and Example 3, +/—A is a non-negative self-adjoint operator
on H with D(A) € D(v/—A). Tt is clear that @ is a symmetric form on H. Let
us show @ is closed. Let {z,} € D(Q) be a Cauchy sequence with respect to @
and such that z,, — x for some x € H. Now

lim Q(x, — xg, Ty, — xk) = nllifrg0 IV=A(z, —z)|> =0

n,k— 00

18



2.5 Dirichlet forms and Markovian semigroups Evan Randles

and because H is complete, v/—Ax,, — y as n — oo for some y € H. Since v/—A
is self-adjoint, it is closed from which we deduce that

z € D(v/—A) and lirrolo V—Az, =y =+v—-Az.
Therefore

ze D(Q) and lim Q(z, —x,z, —2) = lirrolO IV =A(x, — )| = 0.

n—o0

It remains to show that every closed symmetric form comes about in this
form. For this we will appeal to Lemma 2. Let @ be a closed symmetric form
with domain D(Q) and define @Q; : D(Q) x D(Q) — R by

Qi(z,y) = Qz,y) + (z,y)

for x,y € D(Q). Because @ is a closed symmetric form on H is follows immedi-
ately that Q; is a closed symmetric form and satisfies (23). By Lemma 2, there
is a unique self-adjoint operator B for which conditions 1 — 3. of the lemma are
satisfied. Set A =T — B and D(A) = D(B) < D(Q). A is clearly self-adjoint.
We observe that for all z € D(A)

(Az,2) = (z,2) — (Bz,) < |z]* — |z]* = 0

in view of condition 1. of the lemma. Therefore, A is non-positive. Also notice
that for all z € D(A) and y € D(Q),

Q(z,y) = Qi(z,y) — (z,y) = (Br,y) — (z,y) = (B —I)z,y) = (—Az,y).

Using the fact that @ is closed and the operator defined in Example 3 agrees with
Q@ in the sense defined above, it follows that @ is given by (26) as desired. O

2.5 Dirichlet forms and Markovian semigroups

In this section, we complete the second part of our diagram:

£ etA

We now focus on a particular class of Hilbert spaces and apply the theory of
the last section. Let X be a locally compact separable Hausdorff space and m
a positive Radon measure on X such that Supp(m) = X. Our space of interest
is the Hilbert space H = L?(X,m) with inner product

(f.9) = L fgdm.

We will take by definition each f € L?(X,m) to be real valued. Unless otherwise
mentioned, almost everywhere means m-almost everywhere.
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2.5 Dirichlet forms and Markovian semigroups Evan Randles

Definition 13 (Markovian). A bounded linear operator T on L*(X,m) is said
to be Markovian if
0<Tf<1 almost everywhere

whenever f € L2(X,m) and 0 < f < 1 almost everywhere.

Definition 14 (Markovian Semigroup). Let {T}} be a semigroup on L?(X,dm).
We say that {T}} is Markovian if Ty is Markovian for every t = 0.

The unit contraction is the function ® : R - R

0, ift<0
D) =(0vi)al=1<t if0o<t<l.
1, if1<¢t

for all t,s € R.

Definition 15 (Dirichlet Form). A Dirichlet form on L*(X,m) is a symmetric
closed form € with domain D(E) such that ®(f) € D(E) whenever f € D(E) and

E(2(g), ®(f) < (S, f)-

Remark 6. The condition above is often wverbalized by saying that the unit
contraction operates on £. There are a few other notions equivalent to this
condition, [6].

Definition 16 (Regular). Denote by Co(X) the set of continuous compactly
supported functions on X. We say that a Dirichlet form & with domain D(E) is
reqular, if there is a set C € D(E)nCy(X) such that the following two conditions
are satisfied:

1. C is a dense in D(E) in the sense of the norm on D(E) defined by the
inner product,

gl(fvg) = g(fmg) + (f?g)

2. C is dense in Co(X) in the sense of the sup-norm topology.

Before treating the main theorem of this section, let us give two examples. After
the theorem’s proof we shall give an important example of a closed symmetric
form which is not a Dirichlet form.

Example 4. In the present example, our setting is R™ equipped with Lebesgue
measure. The symmetric form & defined by

et =3 [ @D G- [ 3L
n n l=1 K3 (]
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with domain

D(E) = H'(R") = {f e ) [ 1+ PO Pde < oo}

n

is a regular Dirichlet form, [6]. Here, f denotes the Fourier transform of f €
L?(R") and HY(R™) = W2Y(R") is the standard Sobolev space. A nice proof of
the characterization of H' via Fourier transform can be found in [8, Theorem
7.9].

Example 5. Let G be a finitely generated group equipped with the discrete topol-
ogy, i.e. a finitely generated discrete group. We will denote counting measure
on G by #. If S is a minimal set of generators, the function

E(f,9)= D, (flsa) = f(@))(g(s2) — g(x))

zeG,seS

is a Dirichlet form with domain L*(G,#), i.e., it is everywhere defined. See [15]
for discussion.

Theorem 5. There is a one to one correspondence between Dirichlet forms and
Markovian symmetric contraction semigroups on L*(X,m).

We first consider two technical results. The first we shall prove as a lemma
and the second we leave as a fact. The fact’s proof can be found in [6] and is
an application of the measure theoretic Riesz representation theorem, c.f. [10,
Theorem 2.1.4].

Lemma 3. Let {T}} be a contraction semigroup on L*(X,dm) and let {Ry} >0
be its corresponding collection of resolvent operators defined by (8). Then {T}}
1s Markovian if and only for all A > 0, ARy is Markovian.

Remark 7. We note that our assumption that {T;} is a contraction semigroup
guarantees that the Riemann integral in (8) converges for all X > 0. Thus AR
1s indeed a bounded operator for each \ > 0.

Proof of lemma. We shall prove the forward direction; the converse is similar
and can be found in [6]. Suppose that the semigroup {7}};>¢ is Markovian and
take A > 0. Let f € L?(X,dm) be such that 0 < f < 1, almost everywhere. In
the next step we have to be careful with null sets. Let D be the dyadic rationals
on [0,0) and set

Xg=(){zeX:0< (Tuf)(z) <1}.
deD

Because D is countable and the semigroup is Markovian, m(X\X,) = 0. We
consider the approximation by Riemann sums,

2n+1

A o
AR\f = lim - Z e M2 Ty gn f
=0

n—oo
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where the limit converges in the sense of L? in view of Proposition 3. It follows
from basic measure theory that there is a subsequence {n;}?; < N such that
for almost every z € X,

2n1y+1
AR (@) = lim 5 D, e (T f)(@). (27)
=0

Let Y; denote the set of full measure for which (27) holds. Since [/2" € D for
all i,/ e N, for any x € X; n'Y, we have

27"i +1

A _Al/2m
0 < lim 2o 3T e N (T f)(@) = (RS (@)
=0
)\ 2ni+1 o 0
< hm 27 Z eiAl/2 h < AJ eiAtdt = 1
R R, 0

Because m(X\(X,nYy)) =0, it follows that 0 < AR, f < 1 almost everywhere.
O

Fact 6. Let S € B(L*(X,dm)) be self-adjoint. Then there evists a unique
symmetric Radon measure o on X x X such that

Uﬂw:j F(@)g(v)o(dz, dy).

XxX

If S is Markovian the o(X x E) < m(E) for all Borel sets E < X. Moreover,

_ dolX % ()

0
dm

<1 almost everywhere.

The function above denotes the Radon-Nikodym derivative of the measure o(X X
(+)) with respect to m.

We shall now prove Theorem 5.

Proof. By Theorems 3 and 4, for every contraction semigroup, {e!4} of self-
adjoint operators on L?(X,m) there is a closed symmetric form € on L?(X,m)
and conversely, to each closed symmetric form £ on L?(X,m) there is a con-
traction semigroup {e‘4} of self-adjoint operators. All that needs to be shown
is that {e*4} is Markovian if and only if £ is a Dirichlet form.

We suppose that £ is a Dirichlet form and let A > 0. We shall prove that
ARy is Markovian where R, is the resolvent of the semigroup {e4}. To this
end, let g € L?(X,m) such that 0 < g < 1, almost everywhere, and define

W) = EFD+ANf = 5. = %) for fe D(E).

In view of Proposition 3 and Theorem 4 we have

E(Rag, f) + MRag, f) = (9, )
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for all g € L?(X,m) and f € D(£). From this it follows that

Y(f) =Y(Rag) + E(Rrg — [, Rxg — f) + (Bag — [, Ry — f)

and so Ry g is the minimizer of 1); it is clearly the unique minimizer. Since & is
a Dirichlet form, let ® denote the unit contraction, define : R — R by

n(e) = 3o

and put
w =n(Rxg).
Our goal is to show that w = R)g almost everywhere. By hypothesis,

Elww) = {E@AR) 2(Rrg)

N

ie(mw, ARg) = E(Rrg, Brg). (28)
Also by our definition of 7 it follows that

[n(t) —s| < |t —s| forall0<s<1/A
Therefore

() - £

almost everywhere. Consequently

< (o)) - 2

< JX R,\g—g)Qdm
= (Rxg %Rxg—g) (29)

From (29) and (28) we have
¥(w) < Y(Rxrg)
and since R)g minimized ¥, w = R)g almost everywhere. Therefore
0< ®(ARyg) = ARyg <1

almost everywhere and so AR) is Markovian. With the help of Lemma 3, we
conclude that {e!4} is Markovian.

Conversely, we assume that {e’4} is Markovian. For each ¢t > 0 we shall
denote by o; the symmetric Radon measure on X x X guaranteed by Fact 6
and define

£0(f.9) = 1(f ~ ¢ f.9)
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for f,g € L*(X,m). In view of Theorem 4,
lim EO(f, ) = E(f, ) (30)

whenever f € D(A). Also by Fact 6,

NS = [ Pam—g [ f@iwods.dy)

- 5 (@)~ f@) oz, dy)
-
1
= g | U@ - rweddndn) + 1 [ faPstam(o

for f € L*(X,m) and where 0 < s; < 1 almost everywhere. Because both
integrands are non-negative,

EN@UN ) = o [@UFe) - W) Porldz,dy) + 1 [(@(1) s
< 5 (@ = rw) oy + 7 [ Psdm =0 5)

(31)

for all t > 0 and f € L?(X,m). In the above computation we used the two
properties of the unit contraction discussed immediately after its introduction.
It now follows from (30) and (31) that £ is a Dirichlet form and the theorem is
proved. O

Example 6. We return to Example 4. Again our setting is R™ with Lebesgue
measure. The trichotomy of Theorems 4 and 5 takes form in the following way:

/] E etd A

E<—m— et(%A) — %A

Here & is the Dirichlet form from Example 4 with domain H'(R™). A denotes
the standard Laplacian operator on R™ and has the Sobolev space H*(R™) as its
domain. By virtue of the Fourier transform, it is easy to see that for f € L*(R™)

(@21 @) = | KD (x—y)fy)dy
Rn

where

1 |z|? 1 ime —te]?
K = ) = iz-§ ,—t[¢]
2(%) = Ty eXp( At ) (2m)" j Lo d

1s the familiar heat kernel.
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For illustrative purposes, we give an example of a closed symmetric form that
isn’t a Dirichlet form.

Example 7. For simplicity, we work in R. Define Ki') :(0,00) x R by

1

K@) = 5-

o emiwEe—tlel ge

As one can compute (numerically), K} is negative on a set of positive measure
unlike its counterpart K. Consequently, the semigroup corresponding to the
4*_order operator (A/2)% on HY(R) and defined by

(12 f) () = f K (@ — ) f(y)dy
R

for f € L?(R) is not Markovian. In view of Theorem 5, its corresponding closed
symmetric form & is not a Dirichlet form. In this case €& has domain H?*(R)
and is given by

&(.0) = 1 | (AD@ayds = 1 [ 17 Fla©Pas

This is discussed more thoroughly in [3, Section 6.2]. A generalization of this
example as it pertains to local limit theorems can be found in [9].

As it turns out, the probabilistic interpretation of Dirichlet forms and Marko-
vian semigroups, discussed in the next section, is integral to much of analysis
(and geometry). In the study of higher order partial differential operators, the
analysis becomes substantially more difficult as many of the arguments that
work for second order operators, with corresponding Markovian semigroups,
fail in the context of higher order operators if they are true at all. The reader
is encouraged to see [2] for an extensive discussion on this topic.

3 Probability

In this section, we discuss why semigroups, self-adjoint operators and Dirich-
let forms are important in probability theory. In particular, we discuss their
connection to Markov Processes. Our discussion follows [6] and [12].

3.1 Hunt Processes

The present section introduces the notion of a “nice” class of Markov processes
called Hunt processes. Our presentation is similar to that of [1] although, we
work under weaker topological assumptions on the state space.

Let S be a locally compact separable Hausdorff space. We denote the Borel
o-field on S by Z(S). Adjoin a point A to S by setting Sa = S U A and

PBp =RB(S)u{BuUuA:BeHB(S)}.

Topologically, S is the one point compactification of S.
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Definition 17 (Markov Process). Let (2, F,P) be a probability triple and take
S, B(8S),Sn and Ba as above. We call M = (Q, F, {Xi}ie[0,00], {P” }zesa) @
Markov process if

1. For each x € Sn, My = (0, F,{ Xt }1e[0,00], P”) 45 a stochastic process with
state space (S, B(S)).

2. P* is B(S)-measurable as a function of x € S for each t € [0, 0].
3. There is an admissible filtration {F;} for which
P*(X;4s € BE|F;) = PX(X, € E), P"- almost surely
forallze S, E e B(S) and t,s € [0, 0].
4. PA(X; =A)=1 forallt > 0.

Definition 18 (Transition function). Let M be a Markov process. The function
Py 1 [0,00] x S x B(S) — [0, 1] defined by

pt(x, E) = HDI(Xf € E)
18 called the transition function of the process M.

We would like to associate the starting point of a Markov process with a distri-
bution. To this end, let M be a Markov process and for any probability measure
1 on Sa put

PU(E) = | Pr(B)uldn)
Sa
whenever E € FO = o(X,,s < ).

Definition 19 (Strong Markov Process). A Markov process M is called a strong
Markov process (with respect to an admissible Filtration {F;}) if for any stopping
time T, probability measure p on S and FE € B,

PY(X, s € E|F) =PX (X, e E) P‘-almost surely.
We are now in the position to define Hunt Processes.

Definition 20 (Hunt Process). A strong Markov process with state space (S, B(S))
is called a Hunt Process if the following conditions are satisfied:

1. Xoo(w) = A for all w € Q.
2. Xi(w) = A for allt = ((w) where
((w) =inf{t = 0: X;(w) = A}.
3. For each t € [0,0] there is a map 0y : Q — Q for which

X500, = Xyys forall s = 0.
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4. M, is cddlag for each x € Sa.

5. M is quasi-left continuous. This means that for any stopping time T and
any sequence, {T,}, of stopping times increasing to T,

P*(lim X, = X,,7 <) =P*(r < w).
n—0o0
In this case we call {(w) the lifetime of M and 0, the translation operator of M.

A Hunt process is called a diffusion if, in addition, the paths are almost surely
continuous.

3.2 Hunt Processes to Dirichlet forms

In this section, we consider a Hunt processes M with state space (S, %#(S)). We
shall also assume that the space is equipped with a “reference” measure, m,
which we will take to be a positive Radon measure with Supp(m) = S. When
S is a locally compact group m is often taken to be Haar measure, see [15].

Let p(y be the transition function associated to M and for each ¢ > 0 define

(To)(x) = fs f@pe(e,dy) =E7f(X,) (< o0) (32)

for any f for which the integral exists in the extended sense. In view of the simple
approximation lemma and the Monotone convergence theorem, this includes all
non-negative Borel-measurable functions.

Definition 21. We say that M is an m-symmetric Hunt process if for each
t>0,

L f(2)(Tig) (z)dm(z) = L(th)(ff)g(fﬂ)dm(ﬂf)~ (33)
for all non-negative Borel-measurable functions f and g.

Lemma 4. Let M be an m-symmetric Hunt process with state space (S, B(S), m).
Then for each t > 0, Ty, defined by (32), extends to a bounded self-adjoint op-
erator on L(S,m) with |Ti||op < 1.

Proof. Fix t > 0 and observe that for any non-negative Borel-measurable func-
tion f,

(Tif)(2))? < (Tils)(Ty f?)(z) < (T, f%)(x) m-almost everywhere
where we have used Schwarz’s inequality. Now because T} is m-symmetric,

2 2 2 2
L (T, f2dm < L(th )(&)dim(z) < JS<Ttns>(x>(f<x>> dm(z) < j fPdm.

It follows immediately that we can extend T} (linearly) to a bounded operator
on L2(S,m) with |Ti|lop < 1. In view of (33), T; must be self-adjoint. O
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The next theorem provides the final piece to our diagram:

Xy

etA

Theorem 6 (Hunt processes to Dirichlet forms). Let S be a separable, lo-
cally compact, Hausdorff space and m, a positive Radon measure on X with
Supp(m) = S. Then for any m-symmetric Hunt process M with state space
(S, B(S), m), {I:}, defined by (32), is a self-adjoint Markovian contraction
semigroup on L*(S,m).

The following corollary is immediate from Proposition 2:

Corollary 2. Let M and T; be as above and let A denote the non-positive
definite self-adjoint infinitesimal generator of Ty. Then for any f € D(A) <
L2(S,m), u(x,t) = E*(f(X,)) solves the heat equation:

{(at — Au(z,t) =0
u(z,0) = f(x).

Proof of theorem. We first define Ty to be the identity operator on L?(S,m);
the careful reader should be relieved. In view of the previous lemma, {T}}:>0 is
a collection of self-adjoint operators on L?(S,m) with || T}[,, < 1 for all ¢ > 0.
To see that the semigroup property is satisfied, observe that for any E € %(S)
and any s,t = 0,

TTap@) = | [ pdamiea)

- f PY(X, € E)pi(z, dy)
S

P*( Xyt € E) = Tsyilp

where in the last step we used the Markov property. Since 7; is linear, the above
equation forces T;T, and Ti, , to agree on a dense subset of L%(S,m), namely
the simple functions. Since the operators are bounded, it follows immediately
that {T;} satisfies the semigroup property.

To see that T} is Markovian observe that for any 0 < f <1

0<T,f(a) = j F@)pe(e, dy) < f p(,dy) = P*(X, € §) < 1.
S S
It only remains to show that

lim |7,f — ] = 0
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for each f € L?(S,m). To this end, we observe that for any E € %(S) and
r€eS,

ltlfngt]lE(f) = lim SﬂE(y)pt(w,dy)

= ltilrgJEpt(x,dy)

= lmP'(X; € B)

— P*(lim X, € E)
t10

= P*(Xp€eE)

= ]lE(CC)

Above we have used the right continuity of sample paths, the strong Markov
property and the bounded convergence theorem. It follows trivially that the
above formula agrees for any simple function in L?(S,m). From here, a standard
density argument shows that the convergence holds in the desired sense for all
feL*S,m). O

By virtue of the Theorem 5 and the theorem above, we have the following
Corollary:

Corollary 3. Let M be an m-symmetric Hunt process with state space (S, B(5)).
Then m has an associated Dirichlet form £ with domain D(E) < L*(S,m).

As it takes the better part of 200 pages to prove and for cultural reasons, we state
an important partial converse to the above corollary as a fact, see [6, Theorem
6.2.1]. It corresponds to the dotted arrow on the cover page.

Fact 7. Given a regular Dirichlet form £ on L*(S,m), there exists an m-
symmetric Hunt process M with state space (S,%(S)) whose Dirichlet form
s the given one.

3.3 Some fun facts

This short section is included to highlight a couple of ways in which Dirichlet
forms can be used say something probabilistic. We take everything herein for
granted. For details, see [13], [14] and references therein.

Let S be a separable locally compact Hausdorff space equipped with a positive
Radon measure m with Supp(m) = S. For an m-symmetric Hunt process M
with state space (S, Z(S5)), its associate Dirichlet form £ defines and “intrinsic”
metric on S by

p(x,y) = sup{u(x) —u(y) : ue D(E) n Co(S), ¢y < m}
where fi., is an “energy” measure defined in [13]. For some fixed z € S, let

v(r) =m{x e S: p(x,xo) <r}).
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We have the following:
Fact 8. Take M and v as above. If

LOO %dr:oo

then each M, is recurrent. Moreover, for any E, F € B(S) and t > 0,

JE P*(X: € F)m(dz) < /m(E)m(F) exp (_p2(§t7F)> .

A Appendix

Fact 9 (Uniform Boundedness Principle). Let X be a Banach space with norm
|- and {Aa}aca S B(X). Then either there exists an M < o such that

[Aallop < M

for allae A, or
sup [|[Aqz| = 0
acA

for all x in some dense Gy set in X.

The above fact is also called the Banach-Steinhaus theorem. See [10, Theorem
5.8] for a proof.
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