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Evan Randles

1 Introduction

This article is about the diagram on the title page. Our goal is to explore
the connection between semigroups, self-adjoint operators, Dirichlet forms and
Hunt Processes. This connection is the idea behind the probabilistic/diffusive
interpretation of the heat equation. Every arrow in the diagram is shown below
except for the dotted one, this is [6, Theorem 6.2.1]. A less general version can
be found in [1].

2 Functional Analysis

The aim of this section is to explore the interplay between semigroups, self-
adjoint operators and Dirichlet forms. Our first goal is to establish the con-
nection between semigroups and closed, densely defined operators on Banach
spaces; this is the Hille-Yosida Theorem. Our presentation of the Hille-Yosida
Theorem comprises the first two subsections below and, to some extent, fol-
lows [11]. After this, we move into the setting of Hilbert spaces wherein we
will prove a refinement of the Hille-Yosida theorem for self-adjoint operators
and then show that there is a one to one correspondence between closed sym-
metric forms and self-adjoint operators. Finally, we discuss Dirichlet forms and
Markovian semigroups.

2.1 Semigroups and their infinitesimal generators

In this subsection and the next, our setting is a Banach space X with norm } ¨ }.
Unless otherwise stated, convergence means strong convergence. Before intro-
ducing semigroups and their generators, we recall a few standard definitions,
c.f. [7, 11].

Definition 1. Suppose that X is a Banach space and DpAq Ď X is a linear
subspace of X. By a linear operator A on X with domain DpAq, we mean a
function A : DpAq Ñ X that is C-linear. We shall say that A is densely defined
if DpAq is a dense subset of X with respect to the norm topology.

Definition 2 (Closed operator). A linear operator C on X with domain DpCq

is said to be closed if for all txnun Ď DpCq such that

xn Ñ x and Cxn Ñ y

as n Ñ 8, we have

x P DpCq and Cx “ y.

We shall denote by BpXq the set of (everywhere defined) bounded linear opera-
tors on X and, as usual, I P BpXq is the identity operator. The operator norm
on BpXq is denoted by } ¨ }op.
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2.1 Semigroups and their infinitesimal generators Evan Randles

Definition 3 (Spectrum and resolvent set). Suppose that A is a linear operator
with domain DpAq. The resolvent set of A is the set ρpAq consisting of all λ P C
for which pλI ´ Aq : DpAq Ñ X is bijective and such that pλI ´ Aq´1 P BpXq.
The spectrum of A denoted by σpAq is the complement of the resolvent set.

Definition 4 (Operator extension). Suppose A and B are linear operators on
X with respective domains DpAq and DpBq. We say that B is an extension of
A and write A Ă B if DpAq Ď DpBq and Bx “ Ax for all x P DpAq.

Definition 5 (Semigroup). A family tTtutě0 of bounded and everywhere defined
operators on X is called a semigroup if

i. T0 “ I,

ii. for all t, s ě 0,
TtTs “ TsTt “ Tt`s

and

iii. for each x P X,
lim
tÓ0

}Ttx´ x} “ 0.

Property ii above is often referred to as the semigroup property. In the literature,
property iii is not ubiquitously included in the definition of semigroup. When it
is omitted, our definition coincides with that of a strongly continuous semigroup
[6]. We shall not have use for such a distinction.

Definition 6 (Infinitesimal generator of a semigroup). Let tTtutě0 be a semi-
group on X. Define

At “
1

t
pTt ´ Iq

for t ą 0,

DpAq “

"

x P X : lim
tÓ0

Atx exists

*

and put
Ax “ lim

tÓ0
Atx whenever x P DpAq.

The map A : DpAq Ñ X is called the infinitesimal generator of the semigroup
tTtutě0.

Remark 1. The limit defining A is to be understood in the sense of the norm
topology on X. More explicitly, for each x P DpAq, there exists Ax P X for
which

lim
tÓ0

}Atx´Ax} “ lim
tÓ0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ttx´ x

t
´Ax

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0.

Because At is a linear operator for each t ą 0 it follows that A is a linear
operator with domain DpAq.

2



2.1 Semigroups and their infinitesimal generators Evan Randles

Proposition 1 (Basic semigroup facts). Let tTtutě0 be a semigroup on X.

1. There are constants C ě 1 and γ ě 0 such that

}Tt}op ď Cetγ

for all t ě 0.

2. For each x P X, the map t Ñ Ttx from r0,8q into X is continuous.

Proof. 1. First we establish the existence of C. Suppose that for some sequence
of non-negative real numbers tn Ñ 0 we have }Ttn}op Ñ 8. Then by the uniform
boundedness principle, Fact 9 of the appendix, there is x P X for which

lim
nÑ8

}Ttnx} “ 8.

This cannot be true in view of Property iii of Definition 5. Consequently, there
must be C ě 1 and δ ą 0 for which

}Tt}op ď C (1)

for all t P r0, δs. Using the semigroup property, it follows that for any t ě 0 and
natural number n,

Tt “ Tnt{n “ pTt{nqn

and therefore
}Tt}op ď }Tt{n}nop. (2)

So for any t P r0,8q choose a natural number n for which pn ´ 1qδ ď t ă nδ.
Combining (1) and (2) we have

}Tt}op ď }Tt{n}nop ď Cn “ CCn´1 ď CCt{δ “ Ceγt

where γ “ plogpCqq{δ ě 0. This proves the first part of the proposition.
For the second, observe that for any x P X, t P r0,8q and h ą 0,

}Tt`hx´ Ttx} “ }TtpThx´ xq} ď Ceγt}Thx´ x}

where we have used the semigroup property. By an appeal to Property iii. of
Definition 5, the proof is complete.

Definition 7. Suppose that tTtutě0 is a semigroup on X. In view of Propo-
sition 1, let γ ě 0 be the minimal such constant for which conclusion 1 of the
proposition holds. We then say that tTtu is γ-contractive.

We say that tTtu is a contraction semigroup if it is 0-contractive and C “ 1.
That is, tTtu is a contraction semigroup if

}Tt}op ď 1 for all t ě 0.

3



2.1 Semigroups and their infinitesimal generators Evan Randles

To introduce the next example, we recall a standard definition from linear al-
gebra: For A P BpXq, the exponential of A is the operator eA “ exppAq P BpXq

defined by

eA “

8
ÿ

n“0

An

n!
.

The defining series is the limit of its corresponding partial sums in sense of the
operator norm.

Example 1. If A P BpXq,

Tt “ etA “

8
ÿ

n“0

tn

n!
An (3)

defines a semigroup with infinitesimal generator A where DpAq “ X. It is easily
shown that

lim
tÓ0

}Tt ´ I}op “ 0 (4)

from which Property iii of Definition 5 follows trivially. The constants C and
γ of the above proposition are 1 and }A}op respectively.

The above example comprises the class of semigroups for which (4) holds, c.f. [7,
p. 66]. As we shall see, (4) fails precisely when DpAq ‰ X. We can however
say the following:

Proposition 2 (Properties of semigroups and their infinitesimal generators).
Let tTtutě0 be a semigroup on X with infinitesimal generator A.

1. DpAq is a dense linear subspace of X.

2. A is a closed operator.

3. For each x P DpAq,
d

dt
Ttx “ ATtx “ TtAx.

Proof. It is clear the DpAq is a linear subspace of X. The rest of this proof
relies on one crucial idea: Averages play well with derivatives. For x P X and
t ą 0 define

Mtx “
1

t

ż t

0

Tsxds

where the integral exists in the sense of the norm-limit of Riemann sums. Note
that Mtx P X. As in the standard real-valued construction of the Riemann
integral, the same arguments show that Mt P BpXq and }Mt}op ď supsďt }Ts}op
for all t ą 0. Thus by Proposition 1,

}Mt}op ď Ceγt

where C ě 1 and γ ě 0. In fact, most of the basic properties of the Riemann
integral hold in this setting and are verified by precisely the same arguments;

4



2.1 Semigroups and their infinitesimal generators Evan Randles

we will use them abundantly and without explicit mention. For the precise
statements the reader is encouraged to see [4, pps 3. 21-22]. With this in mind,

}Mtx´ x} “
1

t

›

›

›

›

ż t

0

Tsxds´

ż t

0

xds

›

›

›

›

“
1

t

›

›

›

›

ż t

0

pTsx´ xqds

›

›

›

›

ď
t

t
sup
sďt

}Tsx´ x}.

In view of Property iii of Definition 5 this proves that for any x P X,

lim
tÓ0

Mtx “ x. (5)

We claim that for x P X and t, ϵ ą 0,

AtMϵx “ AϵMtx. (6)

To see this observe that

ż t`ϵ

ϵ

Tsxds´

ż t

0

Tsxds “

ż t`ϵ

t

Tsxds´

ż ϵ

0

Tsxds

and so

ϵtAϵMtx “ pTϵ ´ Iq

ż t

0

Tsxds “

ż t

0

TϵTsxds´

ż t

0

Tsxds

“

ż t

0

Tϵ`sxds´

ż t

0

Tsxds “

ż t`ϵ

ϵ

Tsxds´

ż t

0

Tsxds

“

ż t`ϵ

t

Tsxds´

ż ϵ

0

Tsxds “

ż ϵ

0

TtTsxds´

ż ϵ

0

Tsxds

“ pTt ´ Iq

ż ϵ

0

Tsxds “ tϵAtMϵ.

This proves (6). Let us point out that in the above computation the operator
Tϵ was passed under the integral sign. This operation is justified whenever the
operator is closed, see [5, Exercise 7.5.13]. Now for fixed ϵ ą 0, (5) and (6) show
that

lim
tÓ0

AtMϵx “ lim
tÓ0

AϵMtx “ Aϵx

and so Mϵx P DpAq and
AMϵx “ Aϵx. (7)

Thus any x P X is an accumulation point of the collection tMtxutą0 Ď DpAq.
Hence, DpAq is dense in X.

5



2.1 Semigroups and their infinitesimal generators Evan Randles

Before demonstrating that A is a closed operator we make an observation.
For any t, s ą 0, it is clear that Mt and As commute. We observe that for any
x P DpAq, Mtx P DpAq and so

AMtx “ lim
sÓ0

AsMtx “ lim
sÓ0

MtAsx “ MtAx.

Thus for each t ą 0, A and Mt commute.
Now we show that A is closed. Take txnun Ď DpAq for which

xn Ñ x and Axn Ñ y

as n Ñ 8. Using (7) and the observation made in the previous paragraph,

Asx “ lim
nÑ8

Asxn “ lim
nÑ8

AMsxn “ lim
nÑ8

MsAxn “ Msy

for each s ą 0. Thus by (5), limsAsx “ y which proves that x P DpAq and
Ax “ y.

We now prove item 3. First observe that for x P DpAq,

d

dt
Ttx “ lim

hÓ0

Tt`hx´ Ttx

h
“ Tt lim

hÓ0

Thx´ x

h
“ Tt lim

hÓ0
Ahx “ TtAx

where we have used the fact that Tt P BpXq. It remains to show that ATtx “

TtAx for x P DpAq and t ě 0. This is easy to see; it follows by precisely the same
argument we used to show that MtAx “ AMtx for x P DpAq. The proposition
is proved.

Definition 8 (Resolvent of a semigroup). Let tTtut be a γ-contractive semigroup
on X. For x P X and λ P C for which Reλ ą γ put

Rλx “

ż 8

0

e´λtTtxdt. (8)

For each such λ, Rλ is called a resolvent (or resolvent operator) of the semigroup
tTtu.

The above integral is to be understood as an X-valued (improper) Riemann
integral. Formally, it is the Laplace transform of the semigroup tTtu. The
following proposition deals, in particular, with its existence.

Proposition 3. Suppose that tTtut is a γ-contractive semigroup. For each λ
for which Repλq ą γ, Rλ P BpXq, DpAq “ RλpXq and Rλ “ pλI ´Aq´1.

Proof. For any x P X and λ with Repλq ą γ,

}Rλx} “

›

›

›

›

ż 8

0

e´λtTtxdt

›

›

›

›

ď

ż 8

0

}e´λtTtx}dt

ď }x}

ż 8

0

e´ Repλqt}Tt}opdt

ď }x}C

ż 8

0

e´pRepλq´γqtdt “
C

Repλ´ γq
}x} ă 8

6



2.1 Semigroups and their infinitesimal generators Evan Randles

where we have used Conclusion 1. of Proposition 1. Thus Rλ P BpXq.
Now for x P X and ϵ ą 0, the semigroup property guarantees that

ϵAϵRλx “

ż 8

0

e´λtTt`ϵxdt´

ż 8

0

e´λtTtxdt

“

ż 8

ϵ

eλϵe´λtTtxdt´

ż 8

0

e´λtTtxdt

“ peλϵ ´ 1qRλx´ eλϵ
ż ϵ

0

e´λtTtxdt

“ peλϵ ´ 1qRλx´ eλϵϵMϵx` eλϵ
ż ϵ

0

p1 ´ eλtqTtxdt.

By the same argument we used to show that Mtx Ñ x as t Ñ 0, one sees that

lim
ϵÓ0

eλϵ

ϵ

ż ϵ

0

p1 ´ eλtqTtxdt “ 0

and therefore
lim
ϵÓ0

AϵRλx “ λRλx´ x.

This proves that Rλx P DpAq and

pλI ´AqRλx “ x.

Now, for any x P DpAq and λ for which Repλq ą γ,

RλpλI ´Aqx “

ż 8

0

e´λtTtpλx´Axqdt

“ λ

ż 8

0

e´λtTtxdt´

ż 8

0

e´λtTtAxdt

“ λ

ż 8

0

e´λtTtxdt´

ż 8

0

e´λt d

dt
Ttxdt

“ e´λ0T0x “ x

where we used Property 3. of Proposition 2 and partial integration. Therefore

DpAq “ RλpXq and Rλ “ pλI ´Aq´1

as desired.

An immediate corollary is the following:

Corollary 1. Suppose that tTtut is a γ-contractive semigroup on X. If A is
the infinitesimal generator of tTtu then

pγ,8q Ď ρpAq.

7



2.2 The Hille-Yosida Theorem Evan Randles

Remark 2. The notion of a resolvent class of operators, tRλu Ď BpXq exists
abstractly in its own right, i.e. it is defined without explicit use of semigroups.
With it, one can define a corresponding infinitesimal generator A. This is the
tack taken in [6] in the Hilbert space setting. Under certain conditions, it is
seen that the infinitesimal generator of a resolvent class tRλu is the infinitesimal
generator of a semigroup tTtu on X and tRλu and tTtu are then related via (8).
This equivalence, and that given by the Hille-Yosida theorem is summarized in
the following diagram:

Tt \d

�$
AA

AA
AA

A

AA
AA

AA
A

A
{�

;C������

������
ks +3 Rλ

2.2 The Hille-Yosida Theorem

In the previous subsection, we started with a semigroup and derived from it a
densely defined closed linear operator which satisfied some certain nice proper-
ties. In the present subsection we determine that exact class of densely defined
linear operators that are generators of semigroups. This characterization, known
as the Hille-Yosida Theorem, completes the first part of our diagram:

etA

Hille-Yosida

5=rrrrrrrrrr

rrrrrrrrrr

A
u}

ssssssssss

ssssssssss

Theorem 1 (Hille-Yosida). A closed, densely defined linear operator A on a
Banach space X is the infinitesimal generator of a semigroup tTtu if and only
if there are constants C and γ such that for every λ ą γ, pλI ´Aq : DpAq Ñ X
is invertible with

}pλI ´Aq´m}op ď Cpλ´ γq´m (9)

for all m P N.
Proof. If A is the infinitesimal generator of a semigroup tTtu, we demonstrated
in Propositions 1 and 3 that there are constants C ě 1 and γ ě 0 such that for
all λ ą γ, pλI ´ Aq is invertible and (9) holds for m “ 1. We also found that
for any such λ and x P X,

pλI ´Aq´1x “ Rλx “

ż 8

0

e´λtTtxdt.

Using standard properties of the Laplace transform and the semigroup property
it follows immediately that

Rm
λ x “

1

pm´ 1q!

ż 8

0

tm´1e´λtTtxdt

8



2.2 The Hille-Yosida Theorem Evan Randles

for all m P N. Now by partial integration we have that

}Rm
λ }op ď

C

pm´ 1q!

ż 8

0

tm´1epγ´λqtdt “ Cpλ´ γq´m

from which (9) follows.
For the converse, set

Spϵq “ pI ´ ϵAq´1 P BpXq.

In this notation (9) becomes

}Spϵqm}op ď Cp1 ´ ϵγq´m (10)

for all m P N and for all 0 ă ϵ ă p1{γq. Moreover the hypothesis guarantees
that

SpϵqpI ´ ϵAqx “ x (11)

for all x P DpAq and
pI ´ ϵAqSpϵqx “ x (12)

for all x P X whenever 0 ă ϵ ă p1{γq. Rearranging things a bit we see that

lim
ϵÓ0

Spϵqx “ x (13)

for all x P DpAq. Note however that estimate (10) guarantees that }Spϵq}op ď C
for all sufficiently small ϵ and so by using the fact that DpAq is dense in X we
may immediately conclude that (13) holds for all x P X.

Observe that by (12), for each 0 ă ϵ ă p1{γq the operator ASpϵq P BpXq

and so we may define
T pt, ϵq “ expptASpϵqq.

Using (10) and (12) we may write

}T pt, ϵq}op “ } expp´pt{ϵqIq expppt{ϵqSpϵqq}op

ď e´t{ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“0

tnSpϵqn

ϵnn!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

op

ď e´t{ϵ
8
ÿ

n“0

tnCp1 ´ ϵγq´n

ϵnn!

ď C exp

ˆ

γt

1 ´ ϵγ

˙

. (14)

We also observe that for ϵ, δ ą 0 and x P X,

T pt, ϵqx´ T pt, δqx “

ż t

0

d

ds
pT ps, ϵqT pt´ s, δqxqds

“

ż t

0

T ps, ϵqT pt´ s, δqpSpϵq ´ SpδqqAxds.

9



2.2 The Hille-Yosida Theorem Evan Randles

Appealing to (13) with Ax in place of x, we see that by letting ϵ, δ Ñ 0,

}T pt, ϵqx´ T pt, δqx} Ñ 0.

We may therefore define
Ttx “ lim

ϵÓ0
T pt, ϵqx (15)

for all x P DpAq. Using our estimate (14) and the hypothesis that DpAq is dense,
we deduce that this limit not only holds for all x P X, but it holds uniformly for
t in any compact subset of r0,8q for all x P X. Moreover we get the estimate

}Tt}op ď Ceγt. (16)

It now follows from our definition of T pt, ϵq and the convergence indicated above
that Tt forms a semigroup on X. Let B denote the closed, densely defined
infinitesimal generator of Tt. It only remains to show that A “ B.

To this end, we first establish the equality:

Ttx´ x “

ż t

0

TsAxds (17)

for all x P DpAq. Indeed, we know that for each t, ϵ ą 0 and x P DpAq,

T pt, ϵqx´ x “

ż t

0

T ps, ϵqASpϵqxds “

ż t

0

T ps, ϵqSpϵqAxds (18)

where we have used (11) and (12) in interchanging A and Spϵq. Using (14), we
observe that for any s, ϵ ą 0 and y P X,

}T ps, ϵqSpϵqy ´ Tsy} ď }T ps, ϵqSpϵqy ´ T ps, ϵqy} ` }T ps, ϵqy ´ Tsy}

ď C exppγs{p1 ´ ϵγqq}Spϵqy ´ y} ` }T ps, ϵqy ´ Tsy}.

It follows from the above estimate and the fact that (15) holds uniformly on
compact sets that

lim
ϵÓ0

T ps, ϵqSpϵqy “ Tsy

also holds uniformly for s in any compact subset of r0,8q. So for any x P DpAq,

Ttx´ x “ lim
ϵÓ0

pT pt, ϵqx´ xq “ lim
ϵÓ0

ż t

0

T ps, ϵqSpϵqAxds

“

ż t

0

lim
ϵÓ0

T ps, ϵqSpϵqAxds “

ż t

0

TsAxds

as claimed. Recalling (5) and the notation from Proposition 2 it follows that
for x P DpAq,

Ax “ lim
tÓ0

MtAx “ lim
tÓ0

1

t

ż t

0

TsAxds “ lim
tÓ0

Tt ´ x

t
“ Bx.

10



2.3 The Hille-Yosida theorem for self-adjoint operators Evan Randles

We have proved that A Ă B in the sense of operators. To complete the proof,
it remains to show that DpBq Ď DpAq. To this end, select x P DpBq. For
sufficiently large λ we know that

pλI ´Aq : DpAq Ñ X and pλI ´Bq : DpBq Ñ X

are invertible maps. For such a λ put

y “ pλI ´Bqx

and
x̃ “ pλI ´Aq´1y P DpAq.

Using the fact that B extends A it follows that

pλI ´Bqx̃ “ pλI ´BqpλI ´Aq´1y “ pλI ´AqpλI ´Aq´1y “ y “ pλI ´Bqx.

Since pλI´Bq is injective, x “ x̃ P DpAq whenceDpBq Ď DpAq and the theorem
is proved.

Notation 1. In light of the Hille-Yosida theorem and Example 1, for a densely
defined operator A, its corresponding semigroup is henceforth denoted by tetAutě0.

The following theorem is the version of the Hille-Yosida theorem most often
treated in textbooks [1, 5]. We do not state it as a corollary to the above
theorem because it makes use of said theorem’s proof.

Theorem 2 (Hille-Yosida for contraction semigroups). A closed, densely de-
fined operator A on a Banach space X is the infinitesimal generator of a con-
traction semigroup Ttp“ etAq if and only if

p0,8q Ď ρpAq and }pλI ´Aq´1}op ď
1

λ
for all λ ą 0. (19)

Proof. If A is the infinitesimal generator of a contraction semigroup Tt “ etA,
the result follows immediately from Proposition 2, Proposition 3 and Corollary
1.

Conversely, if (19) is satisfied for a closed, densely defined operator A, it is
clear that (9) is satisfied for γ “ 0 and C “ 1. By an appeal to Theorem 1 there
is a semigroup Tt of which A is its infinitesimal generator. Moreover, by (16)

}Tt}op ď 1e0t “ 1

and so Tt is contractive.

2.3 The Hille-Yosida theorem for self-adjoint operators

For the remainder of this article, we move into the setting of Hilbert spaces. In
what follows, H will denote a separable real Hilbert space with inner product

11



2.3 The Hille-Yosida theorem for self-adjoint operators Evan Randles

p¨, ¨q. For a densely defined operator A : H Ñ H with domain DpAq there is a
unique closed operator A˚ : H Ñ H, called the adjoint of A, with domain

DpA˚q “ ty P H : x Ñ pAx, yq is continuous from DpAq to Ru

such that
pAx, yq “ px,A˚yq

for all x P DpAq and y P DpA˚q.

Definition 9 (Symmetric and self-adjoint). Let A and A˚ be as above.

• A is called symmetric if A Ă A˚.

• A is called self-adjoint if A “ A˚.

We note that A is symmetric if and only if

pAx, yq “ px,Ayq

for all x, y P DpAq. Also, a symmetric operator A is self-adjoint if and only
if DpA˚q Ď DpAq. Therefore everywhere defined symmetric operators are self-
adjoint.

Definition 10. Let B : H Ñ H be densely defined with domain DpBq.

1. If pBx, xq ě 0 for all x P DpBq, we call B non-negative and write B ě 0.

2. If pBx, xq ď 0 for all x P DpBq, we call B non-positive and write B ď 0.

3. If pBx, xq ě a for all x P DpBq, we write B ě a.

The following facts are standard but a little too far afield for us. They can both
be found in [11]:

Fact 1. Let A : H Ñ H be self-adjoint. Then A ď 0 if and only if σpAq Ď

p´8, 0s.

Fact 2. If T : H Ñ H is self-adjoint and injective then the range of T is dense
in H and T´1 is self-adjoint.

We now address that so-called Hille-Yosida theorem for self-adjoint operators, it
corresponds, partly, to [6, Lemmas 1.3.1 and 1.3.2]. The proof in [6] makes use of
the projection-valued measure form of the spectral theorem and its correspond-
ing functional calculus; the existence of such machinery is highly non-trivial.
Our proof avoids the spectral theorem all together. The two perspectives will
be connected after the proof.

Theorem 3 (Hille-Yosida for self-adjoint operators). A self-adjoint, non-positive
operator A on a Hilbert space H is the infinitesimal generator of contraction
semigroup tetAu of self-adjoint operators. Conversely, the generator A a con-
traction semigroup tetAu of self-adjoint operators is non-positive and self-adjoint.

12
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Proof. Let A be a self-adjoint, non-positive operator on H. In view of Fact 1,
p0,8q Ď ρpAq. Observe that for any λ ą 0 and y P DpAq,

ppλI ´Aqy, yq “ λpy, yq ´ pAy, yq ě λpy, yq

in view of the fact that A is non-positive. So for any λ ą 0 and x P X,
pλI ´Aq´1x P DpAq and therefore

λ}pλI ´Aq´1x}2 “ λppλI ´Aq´1x, pλI ´Aq´1xq

ď ppλI ´AqpλI ´Aq´1x, pλI ´Aq´1xq

“ px, pλI ´Aq´1xq

ď }x}}pλI ´Aq´1x}.

Of course, this implies that }pλI ´ Aq´1}op ď λ´1 for all λ ą 0 whence (19) of
Theorem 2 is satisfied. An appeal to the theorem gives a contraction semigroup,
tetAu whose infinitesimal generator is A. Since semigroups are everywhere de-
fined, it remains to be shown that each etA is symmetric. To this end, we note
that λI ´ A is self-adjoint for each λ ą 0. An appeal to Fact 2, shows that
pλI ´ Aq´1 is also self-adjoint for each λ ą 0 and so the operator Spϵq defined
in the proof of Theorem 1 is self-adjoint for each ϵ ą 0. From (11) and (12), we
recall that for each x P DpAq and ϵ ą 0, SpϵqAx “ SpϵqAx. Therefore, for each
x P DpAq and y P X,

pASpϵqy, xq “ pSpϵqy,Axq “ py, SpϵqAxq “ py,ASpϵqxq.

Using the fact that ASpϵq P BpXq and DpAq is a dense subset of X, it now
follows that

pASpϵqy, xq “ py,ASpϵqxq

for all x, y P X and therefore ASpϵq is self-adjoint for each ϵ ą 0. From this
and in view of Example 1, it follows that for each t ą 0 and ϵ ą 0, the operator
T pt, ϵq is self-adjoint and everywhere defined. Thus, for any x, y P X and t ą 0,

petAx, yq “ lim
ϵÓ0

pT pt, ϵqx, yq “ lim
ϵÓ0

px, T pt, ϵqyq “ px, etAyq

and therefore etA is indeed symmetric for each t ě 0.
For the converse direction, let tetAu be a contraction semigroup of self-

adjoint operators. In view of Theorem 2, the infinitesimal generator A is densely
defined with p0,8q Ď ρpAq. Using Fact 1, we deduce that A is non-positive.
It remains to show that A is self-adjoint. Again, by a limiting argument and
the fact that each etA is self-adjoint it follows that Rλ, defined by (8) is also
self-adjoint for all λ ą 0. By Proposition 3, pλI ´Aq´1 is therefore self-adjoint
for some λ ą 0, i.e. pλI´Aq´1 is self-adjoint and injective. An appeal to Fact 2
guarantees that pλI ´ Aq, which we know has domain DpAq, is self-adjoint,
whence A is is self-adjoint. This proves the theorem.

13
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Let’s discuss the framework under which the theorem is usually proven. We be-
gin by discussing the projection-valued measure version of the spectral theorem
for unbounded operators. We will take the results herein for granted, for details
see [7] or [11].

Fact 3 (Spectral Theorem). Let A be a self-adjoint operator on H. Then there
exists a unique projection-valued measure, Ep¨q from the Borel σ-field on R such
that

A “

ż 8

´8

λdEpλq.

This is called the spectral resolution of A. Also, the measure E is supported on
the spectrum of A in the sense that EpσpAqq “ I and so

A “

ż

σpAq

λdEpλq.

Moreover, for any x, y P H, Ex,y “ pEp¨qx, yq is a Borel measure on R for which

DpAq “

"

x P H :

ż 8

´8

λ2dEx,xpλq ă 8

*

and

pAx, yq “

ż 8

´8

λdEx,ypλq (20)

when x P DpAq.

For a self-adjoint operator A on H and its projection valued measure Ep¨q, one
can define for any Borel-measurable function f : R Ñ C the operator

fpAq “

ż 8

´8

fpλqdEpλq (21)

with domain

DpfpAqq “

"

x P H :

ż 8

´8

|fpλq|2dEx,xpλq ă 8

*

. (22)

For fpAq an equality analogous to (20) holds.

Fact 4. Let fpAq : DpfpAqq Ñ H be as defined above. fpAq is self-adjoint if
and only if f is real valued.

Fact 5. For Borel-measurable functions f and g, let fpAq : DpfpAqq Ñ H,
gpAq : DpgpAqq Ñ H and pfgqpAq : DppfgqpAqq Ñ H be as defined in (21) and
(22). Then

fpAqgpAqx “

ˆ
ż 8

´8

fpλqdEpλq

˙ ˆ
ż 8

´8

gpλqdEpλq

˙

x

“

ż 8

´8

pfgqpλqdEpλqx

“ pfgqpAqx

for all x P DppfgqpAqq.

14
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Example 2. Let A be a non-positive self-adjoint operator and denote by Ep¨q

its projection valued measure. Note that σpAq Ď p´8, 0s. For each t ě 0 define
the self-adjoint operator,

etA “

ż 8

´8

etλdEpλq “

ż 0

´8

etλdEpλq.

We note that for each t ě 0 and λ ď 0, |etλ|2 ď 1 and so for any x P H,

ż 8

´8

|etλ|2dEx,xpλq “

ż 0

´8

|etλ|2dEx,xpλq ď pEpσpAqqx, xq “ }x}2 ă 8.

Therefore DpetAq “ H. Moreover, using the spectral calculus, it follows that
tetAu is a contraction semigroup on H.

Remark 3. The careful reader should notice that we have defined the symbol
etA in two different ways: one via the Hille-Yosida theorem and one by means
of the spectral calculus. There is justice in the world; these constructions do
indeed agree. In fact, the proof of Hille-Yosida is significantly shorter in this
context [6].

Example 3. Let A be a non-positive self-adjoint operator with projection valued
measure Ep¨q. Define the self-adjoint operator

?
´A “

ż 0

´8

?
´λdEpλq.

In view of the spectral calculus, for any x P DpAq,

ż 0

´8

|
?

´λ|2dEx,xpλq “

ż 0

´8

p´λqdEx,xpλq

“

ż 0

´1

dEx,xpλq `

ż ´1

´8

p´λqdEx,xpλq

ď pEpp´1, 0qx, xq `

ż ´1

´8

|λ|2dEx,xpλq

ď }x}2 `

ż 8

´8

|λ|2dEx,xpλq ă 8.

Thus x P Dp
?

´Aq. Also for any x P DpAq observe that

?
´A

?
´Ax “

ˆ
ż 8

´8

?
´λdEpλq

˙ ˆ
ż 8

´8

?
´λdEpλq

˙

x

“

ż 8

´8

p
?

´λq2dEpλqx

“ ´

ż 8

´8

λdEpλqx “ ´Ax

15
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where we have made use of Fact 5. For this reason we call
?

´A the square
root of ´A. It can be shown that this is the unique non-negative operator on H
whose square is ´A. We also have that

p´Ax, yq “ p
?

´Ax,
?

´Ayq

for all x P DpAq and y P Dp
?

´Aq.

2.4 Symmetric forms and self-adjoint operators

In this subsection, our discussion turns to quadratic forms. Quadratic forms are
of fundamental importance to both partial differential equations and Markov
processes. In the case of Markov processes, the quadratic forms of interest
are called Dirichlet forms; they will be studied in the next subsection. In this
subsection, our goal is to show that there is a one-to-one correspondence be-
tween closed symmetric forms and non-positive self-adjoint operators. Again,
our setting is a real Hilbert space H with inner product p¨, ¨q.

Definition 11 (Symmetric form). Let DpQq Ď H be a dense, linear subspace
of H. A symmetric form on H is a map Q : DpQq ˆDpQq Ñ R that is

• R-Bilinear,

• Symmetric: Qpx, yq “ Qpy, xq for all x P DpQq,

and

• Non-negative: Qpx, xq ě 0 for all x P DpQq.

We will call DpQq the domain of Q.

Remark 4. For purposes of functional analysis, the requirements of the above
definition are rather strong. When put in the context of complex Hilbert spaces,
one can weaken the requirements and much of the theory still goes through [7,11].
We will not need this generality, but it’s nice to know it’s there.

Definition 12. A symmetric form Q with domain DpQq is said to be closed if
for any sequence txnu Ď DpQq such that

xn Ñ x and Qpxn ´ xk, xn ´ xkq Ñ 0 as n, k Ñ 8

we have
x P DpQq and Qpxn ´ x, xn ´ xq Ñ 0 as n Ñ 8.

Lemma 1. Let Q be a closed symmetric form on H such that

Qpx, xq ě }x}2 for all x P DpQq. (23)

Then DpQq is a Hilbert space in the inner product Qp¨, ¨q.
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Remark 5. The converse of Lemma 1 is also true.

Proof of lemma. Because Q is a form it satisfies all of the requirements of an
inner product except possibly positive definiteness. Positive definiteness follows
immediately from (23) (and the fact that DpQq is a linear subspace of H). Thus
Q is an inner product on DpQq. The substance of this proof comes in showing
DpQq is complete in the metric given by Q. To this end, let txnu Ď DpQq be a
Cauchy sequence in DpQq with respect to Q, i.e.,

Qpxn ´ xk, xn ´ xkq as n, k Ñ 8.

By (23), txnu must also be a Cauchy sequence in H and since H is a Hilbert
space, it has a limit in H, let’s call it x. Using the fact that Q is closed, it must
be true that x P DpQq and that

lim
n
Qpxn ´ x, xn ´ xq “ 0

whence DpQq is complete.

Lemma 2. Let Q be a closed symmetric form on H satisfying (23). Then there
exists a unique self-adjoint operator A on H such that

1. A ě 1,

2. DpAq Ď DpQq,

3. Qpx, yq “ px,Ayq for all x P DpQq and y P DpAq.

Proof. We first show the existence of A. For y P H consider the map DpQq :
x ÞÑ px, yq. By (23)

|px, yq| ď }x}}y} ď }y}pQpx, xqq1{2

whence DpQq : x ÞÑ px, yq is a continuous linear functional on the Hilbert space
DpQq with inner product Q. In view of Lemma 1, an appeal to the so-called
Riesz representation theorem for Hilbert spaces, [5, Theorem 2, Section D.3],
gives a vector Ty P DpQq such that

Qpx, Tyq “ px, yq for all x P DpQq.

Clearly, this produces a linear map T : H Ñ DpQq such that

Qpx, Tyq “ px, yq for all y P H and x P DpQq. (24)

Using 23, we see immediately that }T }op ď 1. If Ty “ 0 for some y P H, the
above equation implies that px, yq “ 0 for all x P DpQq. But since Q is densely
defined, px, yq “ 0 for all x P H whence y “ 0. Therefore T is injective. T is
also symmetric. To see this observe that

pTx, yq “ QpTx, Tyq “ QpTy, Txq “ pTy, xq “ px, Tyq (25)
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for all x, y P DpQq where we have used the fact that Qp¨, ¨q and p¨, ¨q are both
symmetric. Now from Fact 2 it follows that the inverse of T , let’s call it
A : DpAq Ñ H, is self-adjoint and densely defined. Necessarily, DpAq Ď DpQq

which establishes 2. Although both domains are dense in H, they cannot be
equal unless T is surjective.

In view of (24) and our definition of A it follows that

Qpx, yq “ Qpx, T pAqyq “ px,Ayq

for x P DpQq and y P DpAq. This proves 3. To see 2., we observe that for any
x P DpAq

px,Axq “ Qpx, T pAqxq “ Qpx, xq ě }x}2

and therefore, A ě 1.
It remains to show that A is unique. Suppose that B is another self-adjoint

operator satisfying conditions 1 ´ 3. If Bx “ 0 for some x P DpBq then by 2.,

Qpy, xq “ py,Bxq “ 0 for all y P DpQq.

Using Lemma 1, we may conclude that x “ 0 whence B : DpBq Ñ H is injective.
Let’s denote the inverse of B by T̃ . Using Fact 2 again we see that DpT̃ q is
dense in H. Using 1. it follows immediately that }T̃ }op ď 1. Since a densely
defined operator can be extended uniquely to all of H with the same bound,
we extended it and by an abuse of notation denote the extension by T̃ . Using
the fact that B is closed (it is self-adjoint), it follows quickly that BT̃ “ I. In
fact, this shows that B was surjective to begin with and extension was really
unnecessary.

Consequently, for each y P H, we have that

Qpx, Tyq “ px, yq “ Qpx, T̃ yq

for all x P DpQq. Again by Lemma 1 we conclude that Ty “ T̃ y for all y P

H which proves that DpBq “ T̃ pHq “ T pHq “ DpAq and that B “ A as
desired.

Theorem 4. There is a one-to-one correspondence between the closed symmet-
ric forms on H and the non-positive self-adjoint operators on H. The corre-
spondence is given by

#

Qpx, xq “ p
?

´Ax
?

´Axq

DpQq “ Dp
?

´Aq.
(26)

Proof. Let A be a non-positive self-adjoint operator on H and define Q by (26).
In view of Fact 4 and Example 3,

?
´A is a non-negative self-adjoint operator

on H with DpAq Ď Dp
?

´Aq. It is clear that Q is a symmetric form on H. Let
us show Q is closed. Let txnu Ď DpQq be a Cauchy sequence with respect to Q
and such that xn Ñ x for some x P H. Now

lim
n,kÑ8

Qpxn ´ xk, xn ´ xkq “ lim
n,kÑ0

}
?

´Apxn ´ xkq}2 “ 0

18
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and because H is complete,
?

´Axn Ñ y as n Ñ 8 for some y P H. Since
?

´A
is self-adjoint, it is closed from which we deduce that

x P Dp
?

´Aq and lim
nÑ8

?
´Axn “ y “

?
´Ax.

Therefore

x P DpQq and lim
nÑ8

Qpxn ´ x, xn ´ xq “ lim
nÑ8

}
?

´Apxn ´ xq}2 “ 0.

It remains to show that every closed symmetric form comes about in this
form. For this we will appeal to Lemma 2. Let Q be a closed symmetric form
with domain DpQq and define Q1 : DpQq ˆDpQq Ñ R by

Q1px, yq “ Qpx, yq ` px, yq

for x, y P DpQq. Because Q is a closed symmetric form on H is follows immedi-
ately that Q1 is a closed symmetric form and satisfies (23). By Lemma 2, there
is a unique self-adjoint operator B for which conditions 1´ 3. of the lemma are
satisfied. Set A “ I ´ B and DpAq “ DpBq Ď DpQq. A is clearly self-adjoint.
We observe that for all x P DpAq

pAx, xq “ px, xq ´ pBx, xq ď }x}2 ´ }x}2 “ 0

in view of condition 1. of the lemma. Therefore, A is non-positive. Also notice
that for all x P DpAq and y P DpQq,

Qpx, yq “ Q1px, yq ´ px, yq “ pBx, yq ´ px, yq “ ppB ´ Iqx, yq “ p´Ax, yq.

Using the fact thatQ is closed and the operator defined in Example 3 agrees with
Q in the sense defined above, it follows that Q is given by (26) as desired.

2.5 Dirichlet forms and Markovian semigroups

In this section, we complete the second part of our diagram:

E ks +3 etA

We now focus on a particular class of Hilbert spaces and apply the theory of
the last section. Let X be a locally compact separable Hausdorff space and m
a positive Radon measure on X such that Supppmq “ X. Our space of interest
is the Hilbert space H “ L2pX,mq with inner product

pf, gq “

ż

X

fgdm.

We will take by definition each f P L2pX,mq to be real valued. Unless otherwise
mentioned, almost everywhere means m-almost everywhere.
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Definition 13 (Markovian). A bounded linear operator T on L2pX,mq is said
to be Markovian if

0 ď Tf ď 1 almost everywhere

whenever f P L2pX,mq and 0 ď f ď 1 almost everywhere.

Definition 14 (Markovian Semigroup). Let tTtu be a semigroup on L2pX, dmq.
We say that tTtu is Markovian if Tt is Markovian for every t ě 0.

The unit contraction is the function Φ : R Ñ R

Φptq “ p0 _ tq ^ 1 “

$

’

&

’

%

0, if t ď 0

t, if 0 ď t ď 1

1, if 1 ď t

.

It is easily seen that |Φptq| ď |Φpsq| for all t ď s and

|Φptq ´ Φpsq| ď |t´ s|

for all t, s P R.

Definition 15 (Dirichlet Form). A Dirichlet form on L2pX,mq is a symmetric
closed form E with domain DpEq such that Φpfq P DpEq whenever f P DpEq and

E pΦpgq,Φpfqq ď Epf, fq.

Remark 6. The condition above is often verbalized by saying that the unit
contraction operates on E. There are a few other notions equivalent to this
condition, [6].

Definition 16 (Regular). Denote by C0pXq the set of continuous compactly
supported functions on X. We say that a Dirichlet form E with domain DpEq is
regular, if there is a set C Ď DpEqXC0pXq such that the following two conditions
are satisfied:

1. C is a dense in DpEq in the sense of the norm on DpEq defined by the
inner product,

E1pf, gq “ Epf, gq ` pf, gq.

2. C is dense in C0pXq in the sense of the sup-norm topology.

Before treating the main theorem of this section, let us give two examples. After
the theorem’s proof we shall give an important example of a closed symmetric
form which is not a Dirichlet form.

Example 4. In the present example, our setting is Rn equipped with Lebesgue
measure. The symmetric form E defined by

Epf, gq “
1

2

ż

Rn

p∇fqpxq ¨ p∇gqpxqdx “
1

2

ż

Rn

n
ÿ

l“1

Bf

Bxi

Bg

Bxi
dx
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with domain

DpEq “ H1pRnq “

"

f P L2pRnq :

ż

Rn

p1 ` |ξ|2q|f̂pξq|2dξ ă 8

*

is a regular Dirichlet form, [6]. Here, f̂ denotes the Fourier transform of f P

L2pRnq and H1pRnq “ W 2,1pRnq is the standard Sobolev space. A nice proof of
the characterization of H1 via Fourier transform can be found in [8, Theorem
7.9].

Example 5. Let G be a finitely generated group equipped with the discrete topol-
ogy, i.e. a finitely generated discrete group. We will denote counting measure
on G by #. If S is a minimal set of generators, the function

Epf, gq “
ÿ

xPG,sPS

pfpsxq ´ fpxqqpgpsxq ´ gpxqq

is a Dirichlet form with domain L2pG,#q, i.e., it is everywhere defined. See [15]
for discussion.

Theorem 5. There is a one to one correspondence between Dirichlet forms and
Markovian symmetric contraction semigroups on L2pX,mq.

We first consider two technical results. The first we shall prove as a lemma
and the second we leave as a fact. The fact’s proof can be found in [6] and is
an application of the measure theoretic Riesz representation theorem, c.f. [10,
Theorem 2.1.4].

Lemma 3. Let tTtu be a contraction semigroup on L2pX, dmq and let tRλuλą0

be its corresponding collection of resolvent operators defined by (8). Then tTtu
is Markovian if and only for all λ ą 0, λRλ is Markovian.

Remark 7. We note that our assumption that tTtu is a contraction semigroup
guarantees that the Riemann integral in (8) converges for all λ ą 0. Thus λRλ

is indeed a bounded operator for each λ ą 0.

Proof of lemma. We shall prove the forward direction; the converse is similar
and can be found in [6]. Suppose that the semigroup tTtutě0 is Markovian and
take λ ą 0. Let f P L2pX, dmq be such that 0 ď f ď 1, almost everywhere. In
the next step we have to be careful with null sets. Let D be the dyadic rationals
on r0,8q and set

Xg “
č

dPD
tx P X : 0 ď pTdfqpxq ď 1u .

Because D is countable and the semigroup is Markovian, mpXzXgq “ 0. We
consider the approximation by Riemann sums,

λRλf “ lim
nÑ8

λ

2n

2n`1
ÿ

l“0

e´λl{2nTl{2nf
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where the limit converges in the sense of L2 in view of Proposition 3. It follows
from basic measure theory that there is a subsequence tniu

8
i“1 Ď N such that

for almost every x P X,

λRλfpxq “ lim
iÑ8

λ

2ni

2ni`1
ÿ

l“0

e´λl{2ni
pTl{2ni fqpxq. (27)

Let Yg denote the set of full measure for which (27) holds. Since l{2ni P D for
all i, l P N, for any x P Xg X Yg we have

0 ď lim
iÑ8

λ

2ni

2ni`1
ÿ

l“0

e´λl{2ni
pTl{2ni fqpxq “ pλRλfqpxq

ď lim
iÑ8

λ

2ni

2ni`1
ÿ

l“0

e´λl{2ni
ď λ

ż 8

0

e´λtdt “ 1.

Because mpXzpXg XYgqq “ 0, it follows that 0 ď λRλf ď 1 almost everywhere.

Fact 6. Let S P BpL2pX, dmqq be self-adjoint. Then there exists a unique
symmetric Radon measure σ on X ˆX such that

pf, Sgq “

ż

XˆX

fpxqgpyqσpdx, dyq.

If S is Markovian the σpX ˆ Eq ď mpEq for all Borel sets E Ď X. Moreover,

0 ď
dσpX ˆ p¨qq

dm
ď 1 almost everywhere.

The function above denotes the Radon-Nikodym derivative of the measure σpXˆ

p¨qq with respect to m.

We shall now prove Theorem 5.

Proof. By Theorems 3 and 4, for every contraction semigroup, tetAu of self-
adjoint operators on L2pX,mq there is a closed symmetric form E on L2pX,mq

and conversely, to each closed symmetric form E on L2pX,mq there is a con-
traction semigroup tetAu of self-adjoint operators. All that needs to be shown
is that tetAu is Markovian if and only if E is a Dirichlet form.

We suppose that E is a Dirichlet form and let λ ą 0. We shall prove that
λRλ is Markovian where Rλ is the resolvent of the semigroup tetAu. To this
end, let g P L2pX,mq such that 0 ď g ď 1, almost everywhere, and define

ψpfq “ Epf, fq ` λpf ´
g

λ
, f ´

g

λ
q for f P DpEq.

In view of Proposition 3 and Theorem 4 we have

EpRλg, fq ` λpRλg, fq “ pg, fq
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for all g P L2pX,mq and f P DpEq. From this it follows that

ψpfq “ ψpRλgq ` EpRλg ´ f,Rλg ´ fq ` pRλg ´ f,Rλ ´ fq

and so Rλg is the minimizer of ψ; it is clearly the unique minimizer. Since E is
a Dirichlet form, let Φ denote the unit contraction, define η : R Ñ R by

ηptq “
1

λ
Φpλtq

and put
w “ ηpRλgq.

Our goal is to show that w “ Rλg almost everywhere. By hypothesis,

Epw,wq “
1

λ
EpΦpλRλgq,ΦpλRλgqq

ď
1

λ
EpλRλg, λRλgq “ EpRλg,Rλgq. (28)

Also by our definition of η it follows that

|ηptq ´ s| ď |t´ s| for all 0 ď s ď 1{λ.

Therefore
ˇ

ˇ

ˇ

ˇ

wpxq ´
gpxq

λ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

pRλgqpxq ´
gpxq

λ

ˇ

ˇ

ˇ

ˇ

almost everywhere. Consequently

´

w ´
g

λ
,w ´

g

λ

¯

“

ż

X

´

w ´
g

λ

¯2

dm

ď

ż

X

´

Rλg ´
g

λ

¯2

dm

“

´

Rλg ´
g

λ
,Rλg ´

g

λ

¯

. (29)

From (29) and (28) we have

ψpwq ď ψpRλgq

and since Rλg minimized ψ, w “ Rλg almost everywhere. Therefore

0 ď ΦpλRλgq “ λRλg ď 1

almost everywhere and so λRλ is Markovian. With the help of Lemma 3, we
conclude that tetAu is Markovian.

Conversely, we assume that tetAu is Markovian. For each t ą 0 we shall
denote by σt the symmetric Radon measure on X ˆ X guaranteed by Fact 6
and define

Eptqpf, gq “
1

t
pf ´ etAf, gq
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for f, g P L2pX,mq. In view of Theorem 4,

lim
tÓ0

Eptqpf, fq “ Epf, fq (30)

whenever f P DpAq. Also by Fact 6,

Eptqpf, fq “
1

t

ż

X

f2dm´
1

t

ż

XˆX

fpxqfpyqσtpdx, dyq

“
1

2t

ż

XˆX

pfpxq ´ fpyqq2σtpdx, dyq

`
1

t

ż

X

fpxq2
ˆ

1 ´
dσtpX ˆ ¨q

dm
pxq

˙

mpdxq

“:
1

2t

ż

XˆX

pfpxq ´ fpyqq2σtpdx, dyq `
1

t

ż

X

fpxq2stpxqmpdxq

for f P L2pX,mq and where 0 ď st ď 1 almost everywhere. Because both
integrands are non-negative,

EptqpΦpfq,Φpfqq “
1

2t

ż

pΦpfpxqq ´ Φpfpyqqq2σtpdx, dyq `
1

t

ż

pΦpfqq2stdm

ď
1

2t

ż

pfpxq ´ fpyqq2σtpdx, dyq `
1

t

ż

f2stdm “ Eptqpf, fq

(31)

for all t ą 0 and f P L2pX,mq. In the above computation we used the two
properties of the unit contraction discussed immediately after its introduction.
It now follows from (30) and (31) that E is a Dirichlet form and the theorem is
proved.

Example 6. We return to Example 4. Again our setting is Rn with Lebesgue
measure. The trichotomy of Theorems 4 and 5 takes form in the following way:

{{ E ks +3 etA ks +3 A

E ks +3 etp
1
2∆q ks +3 1

2∆

Here E is the Dirichlet form from Example 4 with domain H1pRnq. ∆ denotes
the standard Laplacian operator on Rn and has the Sobolev space H2pRnq as its
domain. By virtue of the Fourier transform, it is easy to see that for f P L2pRnq

petp∆{2qfqpxq “

ż

Rn

K
pt{2q
2 px´ yqfpyqdy

where

Kt
2pxq “

1

p4πtqn{2
exp

ˆ

´
|x|2

4t

˙

“
1

p2πqn

ż

Rn

e´ix¨ξe´t|ξ|2dξ

is the familiar heat kernel.
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For illustrative purposes, we give an example of a closed symmetric form that
isn’t a Dirichlet form.

Example 7. For simplicity, we work in R. Define K
p¨q
4 : p0,8q ˆ R by

Kt
4pxq “

1

2π

ż

R
e´ixξe´t|ξ|4dξ.

As one can compute (numerically), K1
4 is negative on a set of positive measure

unlike its counterpart K1
2 . Consequently, the semigroup corresponding to the

4th-order operator p∆{2q2 on H4pRq and defined by

petp∆{2q2fqpxq “

ż

R
K

t{4
4 px´ yqfpyqdy

for f P L2pRq is not Markovian. In view of Theorem 5, its corresponding closed
symmetric form E is not a Dirichlet form. In this case E has domain H2pRq

and is given by

Epf, gq “
1

4

ż

R
p∆fqp∆gqdx “

1

4

ż

R
|f̂pξq|2|ĝpξq|2dξ.

This is discussed more thoroughly in [3, Section 6.2]. A generalization of this
example as it pertains to local limit theorems can be found in [9].

As it turns out, the probabilistic interpretation of Dirichlet forms and Marko-
vian semigroups, discussed in the next section, is integral to much of analysis
(and geometry). In the study of higher order partial differential operators, the
analysis becomes substantially more difficult as many of the arguments that
work for second order operators, with corresponding Markovian semigroups,
fail in the context of higher order operators if they are true at all. The reader
is encouraged to see [2] for an extensive discussion on this topic.

3 Probability

In this section, we discuss why semigroups, self-adjoint operators and Dirich-
let forms are important in probability theory. In particular, we discuss their
connection to Markov Processes. Our discussion follows [6] and [12].

3.1 Hunt Processes

The present section introduces the notion of a “nice” class of Markov processes
called Hunt processes. Our presentation is similar to that of [1] although, we
work under weaker topological assumptions on the state space.

Let S be a locally compact separable Hausdorff space. We denote the Borel
σ-field on S by BpSq. Adjoin a point ∆ to S by setting S∆ “ S Y ∆ and

B∆ “ BpSq Y tB Y ∆ : B P BpSqu.

Topologically, S∆ is the one point compactification of S.
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3.1 Hunt Processes Evan Randles

Definition 17 (Markov Process). Let pΩ,F ,Pq be a probability triple and take
S,BpSq, S∆ and B∆ as above. We call M “ pΩ,F , tXtutPr0,8s, tPxuxPS∆q a
Markov process if

1. For each x P S∆, Mx “ pΩ,F , tXtutPr0,8s,Pxq is a stochastic process with
state space pS,BpSqq.

2. Px is BpSq-measurable as a function of x P S for each t P r0,8s.

3. There is an admissible filtration tFtu for which

PxpXt`s P E|Ftq “ PXtpXs P Eq, Px- almost surely

for all x P S, E P BpSq and t, s P r0,8s.

4. P∆pXt “ ∆q “ 1 for all t ě 0.

Definition 18 (Transition function). Let M be a Markov process. The function
pp¨q : r0,8s ˆ S ˆ BpSq Ñ r0, 1s defined by

ptpx,Eq “ PxpXt P Eq

is called the transition function of the process M .

We would like to associate the starting point of a Markov process with a distri-
bution. To this end, letM be a Markov process and for any probability measure
µ on S∆ put

PµpEq “

ż

S∆

PxpEqµpdxq

whenever E P F0
8 “ σpXs, s ă 8q.

Definition 19 (Strong Markov Process). A Markov processM is called a strong
Markov process (with respect to an admissible Filtration tFtu) if for any stopping
time τ , probability measure µ on S and E P B∆,

PµpXτ`s P E|Ftq “ PXτ pXs P Eq Pµ-almost surely.

We are now in the position to define Hunt Processes.

Definition 20 (Hunt Process). A strong Markov process with state space pS,BpSqq

is called a Hunt Process if the following conditions are satisfied:

1. X8pωq “ ∆ for all ω P Ω.

2. Xtpωq “ ∆ for all t ě ζpωq where

ζpωq “ inftt ě 0 : Xtpωq “ ∆u.

3. For each t P r0,8s there is a map θt : Ω Ñ Ω for which

Xs ˝ θt “ Xt`s for all s ě 0.
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3.2 Hunt Processes to Dirichlet forms Evan Randles

4. Mx is cádlag for each x P S∆.

5. M is quasi-left continuous. This means that for any stopping time τ and
any sequence, tτnu, of stopping times increasing to τ ,

Pxp lim
nÑ8

Xτn “ Xτ , τ ă 8q “ Pxpτ ă 8q.

In this case we call ζpωq the lifetime of M and θt the translation operator of M .
A Hunt process is called a diffusion if, in addition, the paths are almost surely
continuous.

3.2 Hunt Processes to Dirichlet forms

In this section, we consider a Hunt processesM with state space pS,BpSqq. We
shall also assume that the space is equipped with a “reference” measure, m,
which we will take to be a positive Radon measure with Supppmq “ S. When
S is a locally compact group m is often taken to be Haar measure, see [15].

Let pp¨q be the transition function associated to M and for each t ą 0 define

pTtfqpxq “

ż

S

fpyqptpx, dyq “ ExfpXtq pď 8q (32)

for any f for which the integral exists in the extended sense. In view of the simple
approximation lemma and the Monotone convergence theorem, this includes all
non-negative Borel-measurable functions.

Definition 21. We say that M is an m-symmetric Hunt process if for each
t ą 0,

ż

S

fpxqpTtgqpxqdmpxq “

ż

S

pTtfqpxqgpxqdmpxq. (33)

for all non-negative Borel-measurable functions f and g.

Lemma 4. LetM be anm-symmetric Hunt process with state space pS,BpSq,mq.
Then for each t ą 0, Tt, defined by (32), extends to a bounded self-adjoint op-
erator on L2pS,mq with }Tt}op ď 1.

Proof. Fix t ą 0 and observe that for any non-negative Borel-measurable func-
tion f ,

ppTtfqpxqq2 ď pTt1SqpTtf
2qpxq ď pTtf

2qpxq m-almost everywhere

where we have used Schwarz’s inequality. Now because Tt is m-symmetric,
ż

S

|Ttf |2dm ď

ż

S

pTtf
2qpxqdmpxq ď

ż

S

pTt1Sqpxqpfpxqq2dmpxq ď

ż

s

|f |2dm.

It follows immediately that we can extend Tt (linearly) to a bounded operator
on L2pS,mq with }Tt}op ď 1. In view of (33), Tt must be self-adjoint.
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The next theorem provides the final piece to our diagram:

Xt

  A
AA

AA
AA

AA
AA

AA
AA

A

etA

Theorem 6 (Hunt processes to Dirichlet forms). Let S be a separable, lo-
cally compact, Hausdorff space and m, a positive Radon measure on X with
Supppmq “ S. Then for any m-symmetric Hunt process M with state space
pS,BpSq,mq, tTtu, defined by (32), is a self-adjoint Markovian contraction
semigroup on L2pS,mq.

The following corollary is immediate from Proposition 2:

Corollary 2. Let M and Tt be as above and let A denote the non-positive
definite self-adjoint infinitesimal generator of Tt. Then for any f P DpAq Ď

L2pS,mq, upx, tq “ ExpfpXtqq solves the heat equation:
#

pBt ´Aqupx, tq “ 0

upx, 0q “ fpxq.

Proof of theorem. We first define T0 to be the identity operator on L2pS,mq;
the careful reader should be relieved. In view of the previous lemma, tTtutě0 is
a collection of self-adjoint operators on L2pS,mq with }Tt}op ď 1 for all t ě 0.
To see that the semigroup property is satisfied, observe that for any E P BpSq

and any s, t ě 0,

TtTs1Epxq “

ż

S

ż

E

pspy, dzqptpx, dyq

“

ż

S

PypXs P Eqptpx, dyq

“ PxpXs`t P Eq “ Ts`t1E

where in the last step we used the Markov property. Since Tt is linear, the above
equation forces TtTs and Tt`s to agree on a dense subset of L2pS,mq, namely
the simple functions. Since the operators are bounded, it follows immediately
that tTtu satisfies the semigroup property.

To see that Tt is Markovian observe that for any 0 ď f ď 1

0 ď Ttfpxq “

ż

S

fpyqptpx, dyq ď

ż

S

ptpx, dyq “ PxpXt P Sq ď 1.

It only remains to show that

lim
tÑ0

}Ttf ´ f} “ 0
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for each f P L2pS,mq. To this end, we observe that for any E P BpSq and
x P S,

lim
tÓ0

Tt1Epxq “ lim
tÓ0

ż

S

1Epyqptpx, dyq

“ lim
tÓ0

ż

E

ptpx, dyq

“ lim
tÓ0

PxpXt P Eq

“ Pxplim
tÓ0

Xt P Eq

“ PxpX0 P Eq

“ 1Epxq.

Above we have used the right continuity of sample paths, the strong Markov
property and the bounded convergence theorem. It follows trivially that the
above formula agrees for any simple function in L2pS,mq. From here, a standard
density argument shows that the convergence holds in the desired sense for all
f P L2pS,mq.

By virtue of the Theorem 5 and the theorem above, we have the following
Corollary:

Corollary 3. LetM be anm-symmetric Hunt process with state space pS,BpSqq.
Then m has an associated Dirichlet form E with domain DpEq Ď L2pS,mq.

As it takes the better part of 200 pages to prove and for cultural reasons, we state
an important partial converse to the above corollary as a fact, see [6, Theorem
6.2.1]. It corresponds to the dotted arrow on the cover page.

Fact 7. Given a regular Dirichlet form E on L2pS,mq, there exists an m-
symmetric Hunt process M with state space pS,BpSqq whose Dirichlet form
is the given one.

3.3 Some fun facts

This short section is included to highlight a couple of ways in which Dirichlet
forms can be used say something probabilistic. We take everything herein for
granted. For details, see [13], [14] and references therein.

Let S be a separable locally compact Hausdorff space equipped with a positive
Radon measure m with Supppmq “ S. For an m-symmetric Hunt process M
with state space pS,BpSqq, its associate Dirichlet form E defines and “intrinsic”
metric on S by

ρpx, yq “ suptupxq ´ upyq : u P DpEq X C0pSq, µxuy ď mu

where µxuy is an “energy” measure defined in [13]. For some fixed x0 P S, let

vprq “ mptx P S : ρpx, x0q ď ruq.
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We have the following:

Fact 8. Take M and v as above. If

ż 8

1

r

vprq
dr “ 8

then each Mx is recurrent. Moreover, for any E,F P BpSq and t ą 0,

ż

E

PxpXt P F qmpdxq ď
a

mpEqmpF q exp

ˆ

´
ρ2pE,F q

2t

˙

.

A Appendix

Fact 9 (Uniform Boundedness Principle). Let X be a Banach space with norm
} ¨ } and tΛαuαPA Ď BpXq. Then either there exists an M ă 8 such that

}Λα}op ď M

for all α P A, or
sup
αPA

}Λαx} “ 8

for all x in some dense Gδ set in X.

The above fact is also called the Banach-Steinhaus theorem. See [10, Theorem
5.8] for a proof.
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