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In this primer, we outline the so-called method of characteristics for PDEs of
the form

ut + c(t, x, u)ux = f(t, x, u)

where c = c(t, x, u) is some real-valued function. Observe that the advection-
decay equation and non-linear advection equation,

ut + c(t, x)ux = f(t, x, u)

and
ut + c(u)ux = 0,

respectively, are of this form (with c(t, x, u) = c(t, x) for the first and c(t, x, u) =
c(u) for the second). The goal of the method of characteristics is to find a
suitable coordinate change and apply the chain rule to reduce the given PDE
into a family of ODEs which are easier to solve. The basic ingredients of this
method are as follows:

1. Find a locally (hopefully globally) invertible coordinate transformation

(t, x)
T7−→ (τ, ξ) for which t = τ and T (0, x) = (0, ξ). We may therefore

write T (t, x) = (t, ξ(t, x)) for some function ξ = ξ(t, x) satisfying ξ(0, x) =
x for all x. Further, given that T is invertible, T−1(τ, ξ) = (τ, x(τ, ξ)) for
some function x = x(τ, ξ) satisfying x(0, ξ) = ξ for all ξ.

2. Define U(τ, ξ) = u ◦ T−1(τ, ξ) = u(τ, x(τ, ξ)) and, with it, obtain a family
of ODEs in U equivalent to the given PDE.

In what follows, we use the two basic ingredients above to derive two coupled
families of ODEs and their corresponding IVP which are equivalent to the initial
value problem {

ut + c(t, x, u)ux = f(t, x, u) for t > 0, x ∈ R
u(0, x) = u0(x) for x ∈ R

(1)

that we aim to solve; here, the initial “data” u0(x) is known. Solving this
coupled systems of ODEs (see (2) and (3)) will furnish a solution to (1). We
first deal with a technical lemma.

Lemma 1. Suppose that ξ = ξ(t, x) is once continuously differentiable on an
open set O ⊆ R2 and has ∂ξ/∂x ̸= 0 on O. Then
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1. The transformation T is once continuously differentiable (in the sense of
vector-valued functions) on O and its range, R = T (O), is an open set.

2. The transformation T is (locally) invertible with continuously differen-
tiable inverse T−1(τ, ξ) = (τ, x(τ, ξ)) for which ∂x/∂ξ = 1/(∂ξ/∂x) and
∂x/∂τ = −∂ξ/∂t/(∂ξ/∂x).

Under these conditions, we let G ⊆ R be the domain of T−1(τ, ξ) = (τ, x(τ, ξ))
(and, in particular, T−1(G) ⊂ O and T ◦ T−1 is the identity map on G). Then,
if U is continuously differentiable on R and is such that U(0, ξ) = u0(ξ) for all
ξ, then u := U ◦ T , i.e., u(t, x) = U(t, ξ(t, x)) is continuously differentiable on
O,

Uτ (τ, ξ) = ut(τ, x(τ, ξ)) +
∂x

∂τ
ux(τ, x(τ, ξ))

for all (τ, ξ) ∈ G and
u(0, x) = u0(x)

for all x.

Proof. Items 1 and 2 are consequences of the Inverse Function Theorem (see,
e.g., Theorem 9.24 and 9.25 of [1]) and are beyond the scope of this course1. By
Item 2 and the chain rule, we have

Uτ (τ, ξ) =
∂

∂τ
u ◦ T−1(τ, ξ)

=
∂

∂τ
u(τ, x(τ, ξ))

= ut(τ, x(τ, ξ)) + ux(τ, x(τ, ξ))

(
∂x

∂τ
(τ, x(τ, ξ))

)
= ut(τ, x(τ, ξ)) +

∂x

∂τ
ux(τ, x(τ, ξ))

for (τ, ξ) ∈ G, i.e., for all (τ, ξ) ∈ R for which T−1 is defined. Finally, because
T (0, x) = (0, x), we have

u(0, x) = u ◦ T (0, x) = U(0, x) = u0(x)

for all x.

With the above setup in mind, we will reduce (1) into a pair of coupled (family
of) ODEs in the following way. Set F (τ, ξ, U) = f(τ, x(τ, ξ), U) and observe
that, if U(τ, ξ) satisfies the differential equation

Uτ (τ, ξ) = F (τ, ξ, U)

subject to the initial condition that U(0, ξ) = u0(ξ), then by virtue of the lemma,
u = U ◦ T satisfies the differential equation

ut(t, x) + c(t, x, u)ux(t, x) = f(t, x, u)

1The IFT is wonderfule and incredibly powerful and you should learn about it!
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on G and the initial condition u(0, x) = u0(x) provided that

∂x

∂τ
(τ, ξ) = c(τ, x(τ, ξ), U(τ, ξ))

for (τ, ξ) ∈ G. Since we have required x(0, ξ) = ξ, we may view the preceding
equation subject to the initial value problem x(0, ξ) = ξ. All together, we obtain
the pair of families of initial value problems{

Uτ = F (τ, ξ, U) for τ > 0, ξ ∈ R
U(0, ξ) = u0(ξ) for all ξ ∈ R

(2)

and {
∂x
∂τ = c(τ, x(τ, ξ), U) for τ > 0, ξ ∈ R
x(0, ξ) = ξ for all ξ ∈ R

(3)

Upon noting that (3) depends on U through c(τ, x(τ, ξ), U) and (2) depends on x
through F (τ, ξ, U) = f(τ, x(τ, ξ), U), the above (family of) differential equations
are coupled. If solutions U and x can be found, then, in particular, we know the
transformation T−1(τ, ξ) = (τ, x(τ, ξ)) and we can use it to compute ξ = ξ(t, x),
the second component of T . Then, by the lemma and the computations which
led to (2) and (3), we are guaranteed that

u(t, x) = U(t, ξ(x, t))

solves the initial value problem (1). In summary, this method allowed us to
reduce the IVP (1) to the pair of coupled IVPS (2) and (3) which are, hopefully,
easier to solve.

Let’s work an example.

Example 1. Consider the advection and decay problem{
ut + xux = 2tu for t > 0, x ∈ R
u(0, x) = u0(x)

where u0 is known. In this case, we have c(t, x, u) = x and f(t, x, u) = 2tu. The
fact that c(t, x, u) is only a function of x (and not u) makes the (3) “uncoupled”
from (2) and so we can solve (3) first. In this setting, this is{

∂x
∂τ = x(τ, ξ) for τ > 0, ξ ∈ R
x(0, ξ) = ξ for all ξ ∈ R

.

This family ODEs are all linear (in x) and you will find (and you should try)
that the (unique) solution is

x(τ, ξ) = ξeτ

which gives
T−1(τ, ξ) = (τ, ξeτ )
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and so the “characteristic transformation” is

T (t, x) = (t, xe−t)

implying that, in particular, ξ = ξ(t, x) = xe−t. Let’s now focus on (2). In the
present setting F (τ, ξ, U) = f(τ, x(τ, ξ), U) = 2τU and so (2) is{

Uτ = 2τU for τ > 0, ξ ∈ R
U(0, ξ) = u0(ξ) for ξ ∈ R.

Given our ODE theory for linear equations, we recognize the unique solution to
the above equation (which you should find yourself) is given by

U(τ, ξ) = u0(ξ)e
τ2

for (τ, ξ) ∈ R2. Thus, our theory predicts that

u(t, x) = U(t, ξ(t, x)) = U(t, xe−t) = u0(xe
−t)et

2

solves the given IVP. You should verify directly that this, in fact, works (in
doing so, feel free to assume u0 ∈ C1(R).
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