Since the original late 70's - early 80's shots, I have built several generations of equipment. Some important lessons learned were incorporated into improved equipment:
1) The support for the laser must be extremely stable. I've abandoned camera tripods and made my own heavy tripods.
Here's the problem... If you are using a laser with a typical 1.5 milliradian beam divergence, then the beam will spread out at a rate of 1.5 feet for every thousand feet of travel. Therefore, 50 miles away the beam is about 400 feet in diameter. If the laser or tripod twists by only 0.1 degree, the beam at the receiving end will move 460 feet - totally missing the target! If the laser is mounted on a baseplate a foot long, moving one end of that plate only 0.0017" will have the same effect. Camera tripods aren't up to this kind of stability.
I have made tripods with 3/4-inch steel pipe legs. The legs are spread out at a wider angle than a camera tripod to give more stability. The legs converge at a heavy aluminum plate, 1-foot square by 5/8-inch thick. The legs screw into 3/4- inch pipe threaded holes in the plate. This works.
2) There must be some very fine adjustment screws for precise aiming of the laser. A tripod pan-and-tilt head is out of the question. (The effective beamwidth of the laser receiver is much wider than that of the laser so a regular camera tripod would suffice for it.)
In early Helium Neon laser transmitters I mounted one end of the laser on what was effectively a swivel. The other end had a 10-32 screw for elevation adjustment and another for azimuth adjustment. With the arrangement I had, one turn of a 32 thread-per-inch screw would move the beam 2.6 beam diameters at the receive end. This is quite acceptable. In later lasers I used micrometers. These usually run at 40 threads-per-inch, not tremendously finer than a plain screw, but they are very well made and turn very smoothly. Used micrometers show up a swap meets and garage sales, but even new economy models aren't too expensive.
3) Aligning the laser, or, "initial signal acquisition", is the single biggest problem. An extremely bright light, like a handheld spotlight, is needed. Better yet - a Xenon strobe light. This is used in conjunction with radio liaison and rifle scopes mounted on the laser.
You can't understand how hard it is to get the laser lined up initially so the other end can see it. I have done most of my shots to a mountain, like Mount Pinos, probably the tallest in Southern California (over 8800'). You would figure that if you go out a few dozen miles from that mountain and look at it that you would see this nice prominent peak to point at. No way. All you see is a hazy outline of ridges, none more prominent than the other.
A compass helps, but it doesn't get you close enough. You can try to go by landmarks. On one memorable laser shot we were convinced the city lights we were seeing were from Bakersfield, near where we expected to see the laser coming from. But the lights were really from Lancaster, 60-degrees off target! How could one be so far off? When standing on a mountain, in the dark, directions become confused. This is where you need to use and trust a compass.
Some suggest using surveying equipment and sighting off of the North Star. Great if you can afford it. Such gear probably costs more than the lasers and receivers.
What works is first pointing the lasers as well as you can by compass bearings. Now you should know where too look within 10-degrees. The other end shines headlights or a handheld spotlight in your direction. This will work for a few dozen miles. For longer distances you need a Xenon strobe light. I mounted a strobe in an 18-inch diameter spun aluminum parabolic reflector to make a killer light beacon.
Once some light from the other end is seen you can center the
cross-hairs of the rifle scope mounted on the laser on it.
You need to have the rifle scope mounted firmly to the laser
and aligned to the beam. Now the laser can be turned on.
It's very unlikely that the laser will be seen yet at the
other end. This is where the real work begins. You move the
laser back and forth, up and down, very slightly with the
fine adjustment screws. Eventually the other end will see a
flash of light as the beam sweeps by them. At that point
they yell into the liaison radio to stop. Again, it's
unlikely that they will see the light, but you will be very
close. A little more fine adjustment will hit the target.