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Chapter 1

Introduction: The game and
the players

1.1 Four Differential Equations

A differential equation is, generally speaking, an equation which relates a function to its
derivatives. This course is dedicated to the study of an important class of differential
equations, called ordinary differential equations. Before laying out precise definitions
(which is done in the next section) and beginning our study in earnest, the goal of this
introductory section is to get a feel for the subject and build some intuition about where
we are and where we’re going. To this end, we survey four differential equations, the first
of which comes from population ecology.

Example 1: Exponential Population Growth

Given a constant r, consider the differential equation

dP

dt
= rP. (1.1)

This equation gives a relation between some function P and its derivative with re-
spect to an independent variable t. This differential equation comes from population
ecology and is used to model population growth of a population (in an extremely
simple setting). Here, P = P (t) represents the population of a community at time
t and r is a parameter which measures the difference between the birth and death
rates of the population.

Observe that the function
P (t) = ert (1.2)

solves the differential equation (1.1) above because

dP

dt
=

d

dt
ert = rert = rP (t)

which holds for all real numbers t (also written “for all t ∈ R”). As you can easily
see, multiplying the function (1.2) by any constant, e.g., 5ert or 0 = 0ert, produces
another solution to Equation (1.1). This tells us, in particular, that differential
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equations can have multiple solutions. In fact, as we will see later in the semester,
every solution to Equation (1.1) is of the form

P (t) = Cert

for t ∈ R where C is a constant. Such a solution (or collections of solutions) is called
a general solution because it allows one to capture all possible solutions by simply
varying a constant or finite collection of constants.

In practice, one seeks to model the growth/decay of a population governed by
(1.1) while knowing the value of the population at a fixed time t0. For example,
suppose that at time t0 = 0 the population of a certain species has the value P0, a
fixed number. Then to model the population for all time t > t0 = 0, one wants to
find a function P = P (t) which solves the differential equation (1.1) and also has
the property that P (t0) = P (0) = P0. This is called an initial value problem and is
often expressed in symbols as{

dP

dt
= rP, P (0) = P0 .

The equation P (0) = P0 is called an initial condition. You should verify that P (t) =
P0e

rt satisfies both the differential equation and the initial condition. Though it’s
not presently obvious, this is the only such solution.

Example 2: Newton’s Second Law

Consider the differential equation

mẍ = F (t, ẋ, x) (1.3)

where m is a fixed positive number and F : R3 → R is a specified function. Equation
(1.3) describes the motion of a particle (or massive body) of inertial mass m under-
going a force F . Here, x = x(t) is the position of the particle at time t and ẋ = dx

dt

and ẍ = d2x
dt2 are its velocity and acceleration, respectivelya. Under fairly general

circumstances, it is physically reasonable to assume that the external force F on a
particle depends not only time but also on the particles position x and velocityb ẋ.

Of course, you might recognize Equation (1.3) better as “F = ma” or Newton’s
Second Law of Motion. This equation was first understood by Isaac Newton and
originally presented in his 1687 treatise on mechanics and gravitation, Philosopia
Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy).
Together with his eponymous law of gravity, Newton was able to use Equation (1.3)
to show that the planets move in ellipses with the sun at one focus. This was a great
triumph of physics (and mathematics) in that it furnished a theoretical description
of the empirical law of Johannes Kepler (based on the observations of Tycho Brahe)
known as Kepler’s Second Law of Planetary Motion, published originally in 1609.

Stepping away from gravity, let’s consider a particularly simple form of F in Eq. (1.3)
which is used to describe spring-mass systems (and pendula). This is the situation
in which a particle of mass m at position x is pulled toward the equilibrium position
x = 0 by a force proportional to its displacement from 0. It is modeled by the force
function F (t, ẋ, x) = −kx where k > 0 is constant and is determined by the physical
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nature of the spring. In this case, (1.3) can be written in the form

mẍ = −kx.

or, equivalently,

ẍ+
k

m
x = 0. (1.4)

In the Chapter 2, we will see how to solve (1.4). For now, however, we can easily
see that the function

x(t) = 5 cos

((
k

m

)1/2

t

)
solves Eq. (1.4). To see this, it is customary to write

x(t) = 5 cos(ωt)

where ω =
√
k/m and then observe that

ẍ(t) =
d2

dt2
(5 cos(ωt)) = −5ω2 cos(ωt) = −ω25 cos(ωt) = −ω2x(t)

for all t ∈ R. Sincec ω2 = k/m, we have

ẍ(t) +
k

m
x(t) = −ω2x(t) +

k

m
x(t) = 0

for all t ∈ R. Hence x(t) = 5 cos(ωt) satisfies Eq. (1.4) when ω =
√
k/m. We will

see, in fact, that (1.4) has the general solution

x(t) = C1 cos(ωt) + C2 sin(ωt)

where C1 and C2 are constant.

For a nice demonstration of the motion of a spring-mass system, modeled by Eq.
(1.4), I encourage you to watch the Spray Paint Oscillator video from MIT’s Physics
Department [1] (Click here). The video illustrates a spring-mass system where a
displaced mass (a can of spray paint) is subjected to a vertical force from a spring.
The oscillatory behavior the mass exhibits is then captured in time as the spray can
paints a (co)sinusoidal wave on a moving roll of paper. Of course, this oscillatory
behavior is nicely predicted by the general solution above.

aAs is customary, I will often use several different notation for (ordinary and partial) derivatives.
Some common notations for derivatives of a function y = y(t) are y′, dy/dt, ẏ, Dy and Dty.

bThe dependence on velocity often comes from the resistive force (friction) a particle experiences
while traveling through a fluid (air, water, etc).

cOf course, we designed ω precisely so that ω2 = k/m.

Exercise 1: Warm up: Playing around with trigonometric identities

In this exercise, you will play around with an alternative way of writing the general
solution to (1.4). Please do the following.
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1. Given A ≥ 0 and δ ∈ R, show that the function

x(t) = A cos(ωt+ δ)

defined for t ∈ R solves Eq. (1.4), i.e., has the property that

ẍ(t) +
k

m
x(t) = 0

for all t ∈ R, where, as before, ω =
√
k/m. Hint: If you’re not used to doing

things with arbitrary constants, first try things when, e.g., A = 3, ω = 4 and
δ = 5. Keeping close track of the numbers 3, 4 and 5 in your calculation,
replace these numbers with the symbols A, ω and δ and make sure things work
out as they should.

2. Show that
x(t) = C1 cos(ωt) + C2 sin(ωt)

can be equivalently expressed as

x(t) = A cos(ωt+ δ)

for t ∈ R. More precisely, show that, given any real numbers C1 and C2, there
are constants A ≥ 0 and δ ∈ R for which

C1 cos(ωt) + C2 sin(ωt) = A cos(ωt+ δ)

for all t ∈ R. Please give the exact formulae for the constants C1 and C2 in
terms of A and δ. Correspondingly, give the exact formulae for the constants
A and δ in terms of C1 and C2. Hint: You might want to use the trigonometric
identity cos(α+β) = cos(α) cos(β)−sin(α) sin(β). If you’re very careful, you’ll
see that multiple δs will work.

Example 3: Rigid Body Dynamics

Given positive constants I1, I2 and I3, consider the systema of differential equations

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω1ω3

I3ω̇2 = (I1 − I2)ω1ω2. (1.5)

Here, ω1, ω2 and ω3 are functions of time t and ω̇1, ω̇2 and ω̇3 are their derivatives in
time, respectively. These equations are known as the Euler’s Equations of rigid body
dynamics and Eq. (1.5), specifically, gives the simplified torque-free version. This
system of equations describes the evolution of the angular velocitiesb ω1, ω2 and
ω3 of a three-dimensional rigid body where I1, I2 and I3 are the body’s principal
moments of inertia. In slightly simpler language, this equation describes how a
three-dimensional rigid body rotates about its center of mass. This situation is
illustrated in the figure below.
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As it turns out, one can (through much effort) write down solutions to Eq. (1.5)
in terms of elliptic functionsc [7]. We won’t however have such a need for writing
down solutions. We will instead develop some very power methods to analyze these
equations and deduce precise qualitative behavior of solutions through dynamical
system analysis.

In the situation that I1 > I2 > I3 > 0 or, equivalently that the mass profile of the
rigid body is different in each of its three principle directions, Russian Cosmonaut
Vladimir Dzhanibekov observed (in space) that the rigid body will rotate stably
about its smallest and largest inertial axes (those corresponding to ω1 and ω2) and
unstably about its intermediate axis (corresponding to ω2). Essentially, this means
that an object can be spun along two of its principal axes and it will continue to hold
that spin; however, the object cannot be reliably spun around its intermediate axis.
This phenomenon, known as the Dzhanibekov effect, can be completely understood
by analyzing Eq. 1.5 and the corresponding theoretical explanation is aptly called
the “Intermediate Axis Theorem”. This result, also called the “Tennis Racket The-
orem”, was originally explained by M. Ashbaugh, C. Chicone and R. Cushman [2].
You can demonstrate this phenomenon yourself by flipping a book or a deck of cards.
A nice illustration of the Dzhanibekov effect can also be seen here and here. By the
end of the course, we will be able to explain the Intermediate Axis Theorem!

aWe call this a system of differential equations because the three equations, considered together,
interrelate three functions and their derivatives. Later we shall see that this distinction (between
equations and systems of equations) is unnecessary once we allow solutions of “differential equa-
tions” to be vector-valued (and not simply real-valued).

bThese are measured in radians per second.
cFor those of you who have taken complex analysis, these are special types of meromorphic

functions.

Example 4: Black-Scholes, Heat, and Schrödinger

Given a (possibly complex) function A = A(x, t), consider the differential equation

∂u

∂t
+A

∂2u

∂x2
= 0 (1.6)

where u = u(x, t) is a function of x and t. This equation, which relates partial
derivatives of u in x and t, has an incredible number of applications, ranging from
economics to physics to probability.
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When A(x, t) = σ2x2/2 > 0 for a real constant σ, Equation (1.6) is a special case
of the Black-Scholes equation and it arises in the study of mathematical finance. In
this case, u represents the price of an option governed by European call, a rule under
which stocks are purchased, t represents time and x represents the price of a stock
on which the option depends. This Black-Scholes model for financial markets was
named by economist Robert C. Merton to give credit to Fischer Black and Myron
Scholes, two economists who first began to understand the model and its applicabil-
ity. The 1997 Nobel Prize in Economic Sciences was awarded to Merton and Scholes
for their analysis and discovery of the so-called risk-neutral argument.

When A = −α2 < 0 for a real constant α, Equation (1.6) is called the heat equation
and it arises in the study of heat conduction and thermodynamics. To explain how
this situation arises, consider a rod of length L made of a thermally homogeneous
material. Suppose that at time t = 0, the initial temperature of the rod is known and
is given by u(0, x) = u0(x) for all 0 ≤ x ≤ L. Think of the function u0 : [0, L] → R
as some function that is known experimentally at t = 0. Let’s assume that, for
t > 0, the ends of the rod are attached to something (a thermal bath) that keeps
their temperature fixed at 0 for all t > 0, i.e., u(t, 0) = u(t, L) = 0 for all t > 0. This
set-up is depicted in the figure below.

A big question in the study of heat conduction is the following: If we know the ther-
mal properties of the rod, can we find the temperature of the rod, u(t, x), for all t > 0
and all 0 ≤ x ≤ L? It is known, both experimentally and theoretically (see [9] for
a clear derivation from first principles), that the temperature u in the rod satisfies
Equation (1.6) for all t > 0 and 0 < x < L where α is a constant which depends
on the rod’s thermal conductivity, density and specific heat. Solving this prob-
lem (and answering the question posed above) was one of the main goals of Joseph
Fourier in his treatise Théorie analytique de la chaleur (Analytic theory of heat) and
his solution began an entire field of mathematics which we now call Fourier analysis.

When A is a purely imaginary number, say A = iℏ/2µ where ℏ is Planck’s constant,
Equation (1.6) is called Schrödinger’s equation and explains the quantum mechanical
evolution of a “free-particle” of (reduced) mass µ. In this case, u is called a wave
function (usually denoted instead by ψ) and its square |u|2 = |ψ(t, x)|2 gives the
probability of finding the quantum particle at position x and time t.

Now we’ve seen four examples of differential equations. The first three equations are
known as ordinary differential equations because they only involve derivatives with respect
to one variable. Ordinary differential equations are the subject of this course. The last
equation is an example of a partial differential equation and is often the subject of our
topics course, Mathematics 411.

1.2 What is an ordinary differential equation?

As stated in the previous section, this course is about ordinary differential equations.
Let’s give a definition.
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Definition 1.2.1. Given a function F : Rn+2 → R, an equation of the form

F (t, y(n), y(n−1), . . . , y′, y) = 0 (1.70)

is called an ordinary differential equation (ODE). An analytic solution y = y(t) of (1.70)
is a sufficiently differentiable function (n-times differentiable with continuous nth deriva-
tive) such that

F (t, y(n)(t), y(n−1)(t), . . . , y′(t), y(t)) = 0

for all t in a domain (usually an interval) on which F (t, ·, ·, . . . ) is defined and well-
behaved.

What we mean by F (t, ·, ·, · · · ) being defined and well-behaved will be made clear shortly
(when we discuss existence and uniqueness of ordinary differential equations). For now,
you can think of this as the domain in which F makes sense and is nice as a function
of t. Also, we will often refer to an analytic solution simply as a solution. There is a
small distinction between these two terms, but that distinction won’t be important to
us.

Example 5

Consider the function F : R3 → R defined by the rule

F (a, b, c) = 2ac− b

for real numbers a, b, and c (or equivalently, for (a, b, c) ∈ R3). This function gives
rise to the differential equation

F (t, y′, y) = 2ty − y′ = 0.

As the function F is defined and differentiable in t for all t ∈ R, an analytic solu-
tion to this differential equation is a function y = y(t) which is once continuously
differentiable in t and has

2ty(t)− y′(t) = 0

for all t ∈ R. You should check that the function y(t) = 3et
2

is a solution.

The order of an ordinary differential equation is the order of the highest-order derivative
appearing in a non-trivial way. In the definition above, the order of (1.70) is n, as long as
the derivative y(n) actually appears in the F (t, y(n), y(n−1), . . . , y′, y). This happens, in
particular, if the partial derivative of F with respect to its second argument is non-zero.
Pertaining to the example above,

2ty − y′ = 0

is a first-order differential equation because the highest order derivative appearing in it
is 1.

We say that an nth-order ordinary differential equations is in standard form if it written
as

y(n) = f(t, y(n−1), y(n−2), . . . , y′, y) (1.7)

for some function f : Rn+1 → R. Many of the differential equations in this course will be
written in standard form (or able to be equivalently expressed in standard form).
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Example 6

The equation
y′ = 2ty

is a first-order ordinary differential equation in standard form. This can be expressed
as

y′ = f(t, y)

where f : R2 → R is given by f(a, b) = 2ab. It is easy to see that this equation is
equivalent to the differential equation 2ty = y′ considered in the preceding example.
By contrast, the equation

sin(y′) + ey
′
− ty = 0

is an ordinary differential equation but its not expressed in standard form. If you
think about it carefully, it doesn’t seem like it would be easy, if possible at all, to
express this equation in standard form, i.e., to solve for y′. One, in fact, needs a
very deep theorem from multivariate calculus, called the implicit function theorem,
to place it (locally) in standard form. We shall learn about the implicit function
theorem later in these notes.

Let’s now isolate an important class of ordinary differential equations which will later be
of great importance.

Definition 1.2.2. A nth-order differential equation is said to be linear if it is of the form

an(t)y
(n) + an−1(t)y

(n−1) + an−2(t)y
(n−2) + · · ·+ a1(t)y

′ + a0(t)y = g(t) (1.8)

where a0, a1, . . . , an and g are real-valued functions of t defined on an interval I = (α, β) ⊆
R called coefficients; we shall assume further that an(t) ̸= 0 for all t ∈ I. If it happens to
be the case that g = 0, i.e., (1.8) is equivalently

an(t)y
(n) + an−1(t)y

(n−1) + an−2(t)y
(n−2) + · · ·+ a0(t)y = 0,

then the differential equation is said to be a linear homogeneous ordinary differential
equation or simply homogeneous. Otherwise, the equation is said to be inhomogeneous.

Observe that the familiar equation

y′ − 2ty = 0

is a first-order linear homogeneous differential equation. Here a1(t) = 1 and a0(t) = −2t.
By contrast, the equation

y′ + (y)2 = 0

is not a linear equation. We shall take up the study of linear differential equations in the
chapters to come.

1.3 What is an initial value problem?

Consider an nth-order differential equation

y(n) = f(t, y(n−1), . . . , y′, y). (1.9)
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An initial value problem for the differential equation (1.9) comes by specifying a time t0
and n numbers y

(n−1)
0 , y

(n−2)
0 , . . . , y′0, y0 and asking that a solution y=y(t) to (1.9) also

satisfies the constraints

y(n−1)(t0) = y
(n−1)
0 , y(n−2)(t0) = y

(n−2)
0 , · · · y′(t0) = y′0 and y(t0) = y0. (1.10)

The numbers y
(n−1)
0 , y

(n−2)
0 , . . . , y′0, y0 are called initial values and the n equations in

(1.10) are called initial conditions. Such an initial value problem is often written in the
form 

y(n) = f(t, y(n−1), . . . , y′, y)

y(n−1)(t0) = y
(n−1)
0 ,

y(n−2)(t0) = y
(n−2)
0

...
y′(t0) = y′0
y(t0) = y0

(1.11)

or, equivalently, in the form{
y(n) = f(t, y(n−1), y(n−2), . . . , y′, y), y(n−1)(t0) = y

(n−1)
0 , . . . , y′(t0) = y′0, y(t0) = y0.

A solution y to this initial value problem is, by definition, a function y = y(t) solving the
differential equation (1.9) and the n-initial conditions (1.10).

For example, consider the initial value problem y′ = 2ty

y(1) = 5.
(1.12)

We notice that, because this is a first-order differential equation, the initial value prob-
lem consists of only one initial condition, y(1) = 5, where t0 = 1 and y0 = 5. You

should verify that the function y1(t) = (5/e)et
2

= 5et
2−1 satisfies both the differential

equation y′ = 2ty and the initial condition y(1) = 5 (Check it!). On the other hand,

the function y2(t) = 2et
2

solves the differential equation y′ = 2ty but not the initial con-
dition y(1) = 5. Therefore y1 is a solution to the initial value problem (1.12) but y2 is not.

Though there are a number of interesting mathematical reasons to discuss initial value
problems, the posing of an initial value problem is often motivated directly by application.
For example, consider the equation for a spring-mass system

ẍ+ 4x = 0.

As we discussed in the introductory section, this differential equation describes an object
with mass m = 1 (kg) being displaced from equilibrium by a spring with spring constant
k = 4 (kg/s2); here ω =

√
k/m =

√
4 = 2. A solution to this differential equation is

a function x = x(t) which gives the displacement of the object from equilibrium at any
future time t ≥ 0. When it comes to describing the movement of an (actual) object in
time, we could expect to know the position x(0) = x0 and velocity ẋ(0) = ẋ0 of the object
at the starting point t0 = 0. For example, suppose that the object was initially displaced
from equilibrium 0.1 (in meters) and had zero initial velocity. In this case, we would seek
a solution to ẍ + 4x = 0 which satisfied the initial conditions x(0) = 0.1 and ẍ = 0. In
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other words, to describe the evolution of the spring which started displaced by 0.1 meters
and had zero initial velocity, we would seek a solution to the initial value problem

{ẍ+ 4x = 0 ẋ(0) = 0, x(0) = 0.1. (1.13)

Observe that the above initial value problem represents a 2nd-order differential equation
and, as we required, it comes with two initial conditions. If you take for granted the
earlier claim that any such solution to ẍ+ 4x = 0 is of the form

x(t) = C1 cos(2t) + C2 sin(2t)

where C1 and C2 are (to be determined) constants, we can attempt to solve the initial
value problem (1.13). To this end, let’s plug in our general solution to the initial first
initial condition. We have

0.1 = x(0) = C1 cos(2 · 0) + C2 sin(2 · 0) = C1

and therefore C1 = 0.1. For the second initial condition, we obtain

0 = ẋ(0) = C1(−2 sin(2 · 0)) + C2(2 cos(2 · 0)) = 2C2

and therefore C2 = 0. Putting this information together, we suspect that

x(t) = 0.1 cos(2t)

solves the initial value problem (1.13). You should check for yourself that our suspicion
is correct, i.e., this does solve the initial value problem.

As we’ve seen already, differential equations themselves admit multiple solutions. By
pairing a differential equation with enough initial conditions, one hopes to isolate a
single solution satisfying both the differential equation and the initial conditions. For
example, in the mass-spring system above, we started with a collection of solutions
x(t) = C1 cos(2t)+C2 sin(2t) and, by appealing to initial conditions, isolated one particu-
lar solution x(t) = 0.1 cos(2t). This is, of course, a physically reasonable thing to expect.
By knowing the initial position and velocity of an object, one hopes that the evolution of
the object is then determined (at least approximately) by physics (here, Newton’s Sec-
ond Law). In the next chapter, we will study a major result called the Picard-Lindelöff
theorem. For a given differential equation and corresponding initial value problem, this
theorem, in particular, gives sufficient conditions under which a single (unique!) solution
can be found. The following exercise will hlep you think about this issue of uniqueness
and isolating solutions.

Exercise 2

Let k be a non-zero constant and consider the ordinary differential equation

dy

dt
= ky. (1.14)

1. Show that all (analytic) solutions to (1.14) are of the form y(t) = Cekt where
C is a constant. Note: As will be true throughout this course, the exact phras-
ing of this question is important. This question is not asking you to show that
Cekt is a solution (which is easy to verify). This question is asking you to show
that, if you’re given any solution to (1.14), then it must be of the form Cekt.
Hint: Assume that w = w(t) is a solution and use methods from single-variable
calculus to show that w(t)/ekt is necessarily a constant.
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2. Given a (fixed) constant y0, use your previous result to show that the initial
value problem 

dy

dt
= ky

y(0) = y0

has one and only one solution.

11



Chapter 2

First-order ODEs

The focus of this chapter is to understand first-order differential equations and their
initial value problems. We begin this chapter by considering a few special classes of first-
order differential equations for which there are methods to produce analytic (closed-form)
solutions. Our aim here is to begin to understand how the structure of the differential
equation affects the quantitative and qualitative behavior of its solutions. Another aim
is to look at some applications of these equations. We shall quickly find, however, that
most first-order differential equations are not solvable by such simple methods yet we still
would like to understand their solutions. That leads to an important question: If we have
no method for solving a differential equation or initial value problem, how do we know
a solution exists? Further, if we were able to find a solution to an initial value problem,
how would we know it was the only one? Though these questions seem abstract, they are
essential questions to ask if one wants to solve differential equations in the real world. To
answer these questions, we will then turn to the major existence/uniqueness theorem for
differential equations, the Picard-Lindelöff theorem. The theorem will tell us conditions
under which a given initial value problem has a solution and when that solution is unique.
This will then be helpful to us as we turn our focus to qualitative (dynamical system)
analysis and methods for numerical approximations of solutions. Let’s begin with the
easy stuff.

2.1 First Method: Separable Equations

The first class of differential equations that we can solve are called separable equations.
These are defined as follows.

Definition 2.1.1. Given continuous real-valued functions g and h of a single real variable,
a first-order separable differential equation is an equation of the form

dy

dt
=
g(t)

h(y)
. (2.1)

In view of the definition above, we will generally assume that g and h are continuous
functions on an interval (or a union of intervals). Further, we shall assume that h(y) is
non-zero on this domain so that the quotient g(t)/h(y) is a continuous function of t and
y. Though you don’t have to worry about it now, these domains of continuity, especially
that for which h(y) is non-zero, will turn out to be important when we study existence
and uniqueness of solutions.

12



Example 1

1. The differential equation
dy

dt
=

sin(t)

y

is separable. For this equation, g(t) = sin(t) and h(y) = y. Here g(t) is
continuous for all y ∈ R and y is continuous and nonzero on the intervals
(−∞, 0) and (0,∞).

2. The differential equation
dy

dt
= sin(t+ y)

is not separable.

Let’s now outline a method for producing solutions of separable equations. To this end,
suppose that y = y(t) is a solution to (2.1). Then, for all t for which y is defined,
continuous and has continuous derivative dy/dt = y′(t), we have

h(y(t))y′(t) = g(t).

Computing antiderivatives of both sides of this equation gives∫
h(y(t))y′(t) dt =

∫
g(t) dt+ C.

where we are using the fact that any two antiderivatives differ by, at most, a constant C.
Focusing on the left hand side and noting that dy = dy

dt dt = y′(t)dt, we obtain∫
h(y(t))y′(t) dt =

∫
h(y)dy;

this is really u-substitution where we have replaced the function y(t) with the independent
variable y. Consequently we have∫

h(y) dy =

∫
g(t) dt+ C

or, equivalently,
H(y) = G(t) + C

where H is an antiderivative of h and G is an antiderivative of g, i.e., H ′ = h and G′ = g.
Then, provided that the function H is invertible (so it has an inverse), a solution to the
differential equation (2.1) is given by

y(t) = y = H−1(G(t) + C)

where C is some constant of integration. If the differential equation (2.1) comes paired
with an initial condition, i.e., to form an initial value problem, we can subject our solution
to the initial condition. In practice, this will often allow you to determine an appropriate
constant C which will solve the initial value problem.

Example 2
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Consider the separable differential equation

dy

dt
=

2t

3y2
.

Here h(y) = 3y2 and g(t) = 2t. We separate variables to find∫
3y2 dy =

∫
h(y) dy =

∫
g(t) dt+ C =

∫
2t dt+ C.

In other words
y3 = H(y) = G(t) + C = t2 + C

because H ′(y) = 3y2 and G′(t) = 2t. As H(y) = y3 is an invertible function of y,
we can solve the above equation to obtain the family of solutions

y(t) = H−1(G(t) + C) = (t2 + C)1/3.

You should verify that this, in fact, is a solution to the differential equation.

Caution: Where the C is placed in the above solution is important! In fact, though
it looks incredibly similar to the solution we found, the function

ỹ(t) = (t2)1/3 + C

does not solve the differential equation for any C ̸= 0.

In the general procedure above, we used a u-substitution to treat y as an independent
variable (in the integration) and not as a function of t (dependent variable). In practice,
it’s not necessary to worry about this step and instead move directly from (2.1) to the
identity ∫

h(y) dy =

∫
g(t) dt+ C.

In practice, to solve a first-order separable ordinary differential equation of the form

dy

dt
=
g(t)

h(y)
,

you should follow three steps:

Step 1. Formally, by treating the differentials dy and dx as independent quantities, move
everything involving y in the differential equation to the left-hand side and ev-
erything involving t to the right-hand side. This yields

h(y) dy = g(t) dt.

Step 2. Place integration signs on both sides of the equation above to obtain∫
h(y) dy =

∫
g(t) dt+ C

where C is a (necessary) constant of integration. Compute both indefinite inte-
grals (noting that you’ve already accounted for the additive constant C).

Step 3. Solve your remaining equation for y = y(t).
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As Step 1 of the above procedure isolates the (independent variable) t from the (depen-
dent) variable y, we call this method separation of variables. Let’s see this method in
practice.

Example 3

Let’s use separation of variables to solve the initial value problem y′ = 2ty2

y(1) = − 1
2 .

Upon separating variables we find,∫
1

y2
dy =

∫
2t dt+ C

or, equivalently,
−1

y
= t2 + C.

Let’s solve this equation to find

y(t) =
−1

t2 + C
.

To solve the initial value problem, we now consider the initial condition y(1) = −1/2.
Subject to this initial condition, we have

−1

2
= y(1) =

−1

12 + C

and so C = 1. Thus, the method of separation of variables produces the solution

y(t) =
−1

t2 + 1
.

You should, in fact, check directly that this solves the initial value problem.

Example 4

It will often be the case that the equation

H(y(t)) = G(t) + C (2.2)

cannot be easily solved for y(t), at least in terms of functions you know. This is
precisely the situation in which H(y) does not have an inverse you can write down.
In this case, solutions can be left in the implicit form (2.2). For example, consider
the differential equation.

dy

dt
=

2t

y2 + 1

is separable. In this case, g(t) = 2t and h(y) = y2 + 1. Observe that g(t) is a
continuous for all t ∈ R and h(y) is a continuous (and strictly positive) function for
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all y ∈ R. Let’s separate variables to find∫
(1 + y2) dy =

∫
h(y) dy =

∫
g(t) dt+ C =

∫
2t dt+ C = t2 + C.

Since y + y3/3 is an antiderivative of 1 + y2, we have

H(y(t)) = y(t) +
y(t)3

3
= t2 + C.

Solving this cubic equation in y, though possible, is not necessarily easy. In cases
like this, leaving things in implicit form is sufficient.

Exercise 3

1. Determine whether or not the following first-order ordinary differential equa-
tions are separable. If so, give the general solution.

(a)
dy

dt
= (1 + 2t)(1 + y)

(b)
dy

dt
= 1− t+ y2 − ty2

(c)
dy

dt
= 4y + t

(d)
dx

dt
= tex−t2+3

2. Solve the following initial value problems.

i. 
dy

dt
=

t2

y + t3y

y(0) = −2

ii. 
dz

dt
= 2tz2 + 3t2z2

z(1) = −1

Example 5

As it turns out, the method of separation of variables can often miss solutions.
Consider, for instance, the differential equation

y′ = 2t(y − 1)2.
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Using the method of separation of variables, we have∫
1

(y − 1)2
dy =

∫
2t dt+ C.

On one hand

H(y) =

∫
1

(y − 1)2
dy =

−1

(y − 1)

and on the other hand

G(t) =

∫
2t dt = t2.

Consequently, the method of separation of variables produces solutions y = y(t) for
which

−1

y − 1
= H(y) = G(t) + C = t2 + C

or, equivalently,

y(t) = 1− 1

t2 + C
(2.3)

where C is a constant. It is easy to see (and you should check it yourself) that this
gives a solution to the given differential equation for every real number C.

Consider now the initial value problem{
y′ = 2t(y − 1)2 y(0) = 1 .

Assuming that our solution is of the form (2.3), we seek a constant C for which

1 = y(0) = 1− 1

02 + C
= 1− 1

C

or, equivalently, a constant C for which 0 = 1/C. Of course, no such constant
exists. For this reason, (2.3) cannot be a general solution to the given differential
equation because not ever initial value problem can be solved by simply specifying
the constant C. This is a limitation of the method of separation of variables. Let
us notice, however, that the function which is identically one, i.e., y(t) = 1 for all
t ∈ R, solves the initial value problem. To see this, simply observe that y(0) = 1
and

dy

dt
=

d

dt
1 = 0 = 2t(1− 1)2 = 2t(y(t)− 1)2

for all t. Hence the constant function y(t) = 1 does indeed solve the initial value
problem.

2.1.1 An application: Newton’s Law of Cooling

Consider an object with initial temperature T0 placed in a thermal bath of ambient tem-
perature Ta. We want to understand how the temperature of the object, T (t), changes
over time from its initial temperature T0. For example, if a hot cup of coffee at temper-
ature T0 = 200◦F is placed in a room of constant temperature Ta = 70◦F , we would like
to know the temperature T (t) as a function of time t > 0.

A good model for this situation is to assume that the temperature T (t) changes in time
in a way that is proportional to the difference between T (t) and the ambient temperature
Ta. As a differential equation, this is

dT

dt
= −k(T − Ta),
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known as Newton’s Law of Cooling. Assuming that the constant k is positive, let’s make
note of a few things which make this model physically plausible:

1. In the case that the temperature of the object T is equal to the ambient temperature
Ta, the right-hand side of the differential equation is zero and hence dT/dt = 0. In
this case we expect the temperature to remain constant.

2. In the case that the object is warmer than the ambient temperature, i.e., T > Ta,
the right-hand side of the differential equation is negative (because k > 0) and so
dT/dt < 0 which predicts that the object will cool over time.

3. Finally, in the case that the object is cooler than the ambient temperature, e.g., you
place a cold can of soda outside on a hot summer day, the same argument predicts
that dT/dt > 0 and hence the object will warm in time.

Though the above observations provide a good heuristic account of why Newton’s Law
of Cooling makes some sense, the real justification can only come empirically. As it turns
out, this model does provide a fairly reasonable description of cooling/warming for many
materials away from phase transitions [9]. The constant k can often be measured for a
given object and is a function of the chemical makeup of the object and the object’s shape
(especially its ratio of the surface area to volume).

The corresponding initial value problem for this model is
dT

dt
= −k(T − Ta)

T (0) = T0

where, again, k is a constant, Ta is the ambient temperature of the thermal bath (environ-
ment) and T0 is the initial temperature of the object. To solve the differential equation,
we separate variables to obtain

dT

T − Ta
= −k dt

and so

log(T − Ta) =

∫
dT

T − Ta
=

∫
−k dt+ C = −kt+ C.

Exponentiating both sides give

T (t)− Ta = T − Ta = e−kt+C = eCe−kt = Ke−kt

where eC = K is a constant. Thus

T (t) = Ke−kt + Ta.

where K is constant. Combining this with the initial condition T (0) = T0, we obtain a
solution to the initial value problem,

T (t) = (T0 − Ta)e
−kt + Ta

defined for t ≥ 0.

Remark 2.1.2. Had we been more careful in the above computations, we would have
written ∫

dT

T − Ta
= log |T − Ta|,
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accounting for the possibility that T < Ta, and also made mention that the constant
K = eC should necessarily be positive. In being so careful, one then has to really think
hard about the signs of things while solving for T (t). As it turns out, all of this worry is
unnecessary and these two wrongs (missing the absolute value and not restricting K to
be positive) cancel each other out and still give

T (t) = (T0 − Ta)e
−kt + Ta

as the correct solution. Getting the correct answer by being cavalier about absolute values
won’t always be a good idea and so sometimes the worrying is good practice.

Example 6: Cooling coffee

Suppose that a cup of coffee, initially at 200◦F is placed in a room of constant
ambient temperature Ta = 60◦F . Due to the thermal conductivity of the coffee (and
its vessel), suppose that it is known that Newton’s Law of Cooling is approximately
valid with k = log(2)/10 ≈ 0.0693 . . . (min)−1. How long will it take for the coffee
to cool to the drinkable temperature of 130◦F? Does the temperature of the coffee
equilibriate in the long run?

To answer these questions, we appeal to the solution to the initial value problem
obtained above. We have

T (t) = (T0 − Ta)e
−kt + Ta = (200− 60)e− log(2)t/10 + 60

= 140(e− log(2))(t/10) + 60 =
140

2(t/10)
+ 60

for t ≥ 0. To answer the first question, we ask: For which t is

T (t) =
140

2(t/10)
+ 60 = 130

or, equivalently, for which t is
2(t/10) = 2?

In this case, we see that t = 10 minutes.

Exercise 4: A warming can of Moxie

On a hot day in Waterville (ambient temperature is 90◦ F), you place a cold can of
Moxie (Maine’s official soft drink), which is initially at 40◦, on a picnic table. Five
minutes later, the Moxie has warmed to 50◦. If the outside temperature remains at
a constant 90◦, what will happen to the temperature of the Moxie after it remains
on the table for 20 minutes? How many minutes will it take for the Moxie to warm
to 80◦? What happens to the temperature of the Moxie in the long run, i.e., as
t→ ∞?

2.2 Linear First-Order Equations

A linear first-order ordinary differential equation is an equation of the form

dy

dt
+ a(t)y = b(t) (2.4)
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where a(t) and b(t) are real-valued functions. We shall assume that the functions a and b
are continuous on some interval I = (α, β). In comparing this form to Definition 1.2.2, the
above equation can be seen equivalent by setting a(t) = a0(t)/a1(t) and b(t) = g(t)/a0(t).
We say that the equation (2.4) is homogeneous if b(t) = 0, i.e., if (2.4) is of the form

dy

dt
+ a(t)y = 0. (2.5)

We observe that a homogeneous first-order equation is separable. To find an analytic
solution y = y(t), we separate variables to find

1

y

dy

dt
= −a(t)

and therefore

ln |y(t)| = −
∫
a(t) dt+ c1

Upon taking exponentials of both sides, we obtain

|y(t)| = exp

(
−
∫
a(t) dt+ c1

)
.

This can be written equivalently as∣∣∣∣y(t) exp(∫ a(t) dt

)∣∣∣∣ = ec1 = k (2.6)

which holds for all t ∈ I, i.e., for all α < t < β. At this point, we’d like to drop the
absolute values and so we’ll need to worry a little bit. The following exercise will help in
this.

Exercise 5

Let f be a real-valued function on I = (α, β). Suppose that, for some constant k,

|f(t)| = k (2.7)

for all α < t < β.

1. Suppose that f is a continuous function on I. Using the intermediate value
theorem (from Calculus 1), argue why f must be identically constant on I, i.e.,
there is some real number C for which f(t) = C for all α < t < β. What is C?

2. Give an example of a (possibly discontinuous) function f which satisfies (2.7)
but for which f is not constant.

Observe that, as a = a(t) is a continuous function on I, any antiderivative
∫
a(t) dt will

also be continuous. Also, as we seek an analytic solution, y(t) is necessarily continuous.
Consequently, the expression

y(t) exp

(∫
a(t) dt

)
is continuous and, in view of (2.6), its absolute value is constant. Using the result from
Item 1 of the exercise above, we conclude that

y(t) exp

(∫
a(t) dt

)
= C

20



for some constant C or, equivalently,

y(t) = C exp

(
−
∫
a(t) dt

)
= Ce−A(t). (2.8)

where A(t) =
∫
a(t) dt is an antiderivative of a on I. Since any two antiderivatives of a(t)

on I differ by, at most, an additive constant1, a replacement of one antiderivative in (2.8)
with another will result to simply changing the multiplicative constant C. Equation (2.8)
is said to be the general solution of the homogeneous equation, (2.5). Let’s verify directly
that (2.8) solves (2.5). As A′(t) = a(t), we have, for any constant C,

d

dt
y(t) =

d

dt
Ce−A(t) = −CA′(t)e−A(t) = −a(t)Ce−A(t) = −a(t)y(t)

and therefore
dy

dt
+ a(t)y(t) = 0

for all α < t < β.

Example 7

Consider the linear homogeneous differential equation

dy

dt
+

t√
1 + t2

y = 0.

To find a solution to the equation, we must find an antiderivative A(t) of a(t) =
t(1 + t2)−1/2. Upon making a u-substitution, u = t2, we find

A(t) =

∫
t√

1 + t2
dt =

√
1 + t2.

Therefore, the method outlined above yields the solution

y(t) = Ce−
√
t2+1

for each C ∈ R. You should verify that this solves the given differential equation.

We’ve extensively treated the homogeneous case. Let’s now deal with the non-
homogeneous case

dy

dt
+ a(t)y = b(t).

To solve this equation, we need a “trick”. This trick is found by asking the following
question: Could we multiply this non-homogeneous equation by a function µ(t) which
would make the left hand side equivalent to the derivative of the product of µ and y, i.e.,
we want to find a suitable function µ for which

d

dt
(µ(t)y(t)) = µ(t)

dy

dt
+ a(t)µ(t)y(t).

In studying the solution we found for the homogeneous equation, we suspect that µ(t) =
eA(t) where A(t) is an antiderivative of a(t). If this is the case, we make use of the product

1Remember this from your single-variable calculus course?
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rule to see that

d

dt
(µ(t)y(t)) =

d

dt

(
eA(t)y(t)

)
= eA(t) dy

dt
+
d

dt

(
eA(t)

)
y(t)

= eA(t) dy

dt
+A′(t)eA(t)y(t)

= eA(t) dy

dt
+ a(t)eA(t)y(t);

this is just as we desired. For this reason, the function

µ(t) = eA(t) = exp

(∫
a(t) dt

)
is called an integrating factor2. Let’s multiply the integrating factor into the inhomoge-
nous equation (1.8) and make use of the product property. We have

d

dt
(µ(t)y(t)) = µ(t)

dy

dt
+ a(t)µ(t)y(t) = µ(t)b(t).

In view of the fundamental theorem of calculus

µ(t)y(t) =

∫
d

dt
(µ(t)y(t)) =

∫
µ(t)b(t) dt+ C

and so

y(t) =
1

µ(t)

∫
µ(t)b(t) dt+

C

µ(t)
.

Let’s verify that this, in fact, solves the inhomogeneous differential equation. We have

dy

dt
=

d

dt

(
1

µ(t)

∫
µ(t)b(t) dt

)
+
d

dt

(
C

µ(t)

)
=

d

dt

(
e−A(t)

∫
eA(t)b(t) dt

)
+
d

dt

(
Ce−A(t)

)
= −A′(t)e−A(t)

(∫
eA(t)b(t) dt

)
+ e−A(t) d

dt

(∫
eA(t)b(t) dt

)
−A′(t)Ce−A(t)

= −a(t)e−A(t)

∫
eA(t)b(t) dt+ e−A(t)

(
eA(t)b(t)

)
− a(t)Ce−A(t)

= b(t)− a(t)

(
e−A(t)

∫
eA(t)b(t) dt+ Ce−A(t)

)
= b(t)− a(t)

(
1

µ(t)

∫
µ(t)b(t) dt+

C

µ(t)

)
= b(t)− a(t)y(t)

and so
dy

dt
+ a(t)y(t) = b(t)

as desired. As it turns out, the solution y(t) above is a general solution to the differential
equation (1.8) which means that every solution to (1.8) is of this form. We state this as
a theorem and postpone the proof until the end of the chapter.

2Note, we are using a new notation for the exponential function, ex = exp(x).
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Theorem 2.2.1. Let a(t) and b(t) be continuous functions on an interval I = (α, β) and
let A(t) be an antiderivative of a(t). Then the differential equation

dy

dt
+ a(t)y = b(t)

has infinitely many solutions, all of which are given by

y(t) =
1

µ(t)

∫
µ(t)b(t) dt+

C

µ(t)

for t ∈ I where C is a constant and µ(t) = eA(t).

Remark 2.2.2. In practice, it’s often not of great use to memorize the formula above for
y(t). If you understand the basic idea of how this solution was found, it’s straightforward
to reproduce it.

Example 8

Consider the inhomogeneous differential equation

dy

dt
+ y = 10t.

This is a linear inhomogeneous first-order ordinary differential equation; it is not
separable. Given that a(t) = 1, to solve this differential equation we introduce the
integrating factor

µ(t) = exp

(∫
a(t) dt

)
= et

making use of the antiderivative A(t) = t of a(t). Multiplying both sides of the
differential equation by µ(t) we obtain

et
dy

dt
+ ety(t) = 10tet.

As designed, we recognize the left-hand side by the derivative of the product ety(t)
and, in this way, we obtain

d

dt

(
ety(t)

)
= 10tet

and therefore

ety(t) =

∫
d

dt

(
ety(t)

)
dt+ C =

∫
10tet dt+ C = 10

∫
tet dt+ C.

To compute this integral, it’s useful to integrate by parts where u = t and dv = et.
This gives ∫

tet dt = uv −
∫
v du = tet −

∫
et · 1 dt = tet − et.

Putting everything together yields

ety(t) = 10(tet − et) + C
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from which we obtain the general solution

y(t) = 10t− 10 + Ce−t.

Example 9

Consider the initial value problem
dy

dt
+ 4y = e−3t

y(0) = 2.

Let’s first solve the inhomogenous differential equation. Given that a(t) = 4, we
multiply both sides by the integrating factor

µ(t) = exp

(∫
4 dt

)
= e4t

which yields
d

dt

(
e4ty(t)

)
= e4t

dy

dt
+ 4e4ty(t) = e4te−3t = et.

Consequently, (
(e4ty(t)

)
=

∫
et dt+ C = et + C.

Thus, our general solution is

y(t) =
1

e4t
(
et + C

)
= e−3t + Ce−4t.

Let’s subject this general solution to the initial condition y(0) = 2. We have

2 = y(0) = e−3·0 + Ce−4·0 = 1 + C

and hence C = 1. Plugging this C into the general solution yields

y(t) = e−3t + e−4t.

This is, in fact, a solution to the initial value problem. I encourage you to verify this
directly, i.e., verify that this y solves the differential equation and also satisfies the
initial condition.

Now, it’s your turn.

Exercise 6

1. Solve the following linear equations.

(a)
dy

dt
+

2t

1 + t2
y =

1

1 + t2
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(b)
dz

dt
+ z = tet

(c)
ẋ− 2x = sin(2t)

(d)

y′ +
2

t
y = t3et

2. Solve the following initial value problems.

(a) 
dy

dt
+ y

1+t = 2

y(0) = 1.

(b) 
dy

dt
+ 2ty = t

y(0) = 3/2

Let’s study a nice application of linear first-order differential equations.

Exercise 7

Radioactivity is a property of substances whose constituent atoms undergo spon-
taneous decomposition. This process of spontaneous decomposition is known as
radioactive decay. This decay usually occurs at some constant rate and can be mea-
sured by a Geiger counter. Generally speaking, the more radioactive the material,
the faster the decay. Based on work by Ernest Rutherford and his contemporaries
(including Marie Curie), it was discovered that radioactive decay was well modeled
by a first-order ordinary differential equation of the form

dN

dt
+ λN = 0

where N is the number of atoms of a substance at time t and λ is the rate of decay,
a constant. If substance is known to have N0 atoms at time t0, the number of atoms
for t > t0 satisfies the initial value problem

dN

dt
+ λN = 0

N(t0) = N0.

1. The half-life of a radioactive substance is defined to be the amount of time t−t0
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at which the number of atoms left N(t) is exactly half of the initial number of
atoms, N0. If the half-life of a certain radioactive sample of carbon-14 is 5570
years, and the decay is described by the initial value problem above, find the
rate of decay λ.

2. Given your result from the previous item, find the amount of time it will take
for this sample of carbon-14 to decay to 1/10 of its original mass.

2.3 Qualitative analysis: slope fields and solutions to
initital value problems

In this section, we study first-order differential equations from a qualitative perspective.
We hope our study here builds a strong intuition and informs upon the long term behavior
of solutions of first-order ODEs. To this end, we consider the general first-order ordinary
differential equation

dy

dt
= f(t, y).

We ask:

What does this equation tell us graphically?

To answer this question, we first introduce the notion of a slope field. Given a function
f(t, y), a slope field is produced by selecting points (t, y) ∈ R2 in the domain of f and
plotting, at the point (t, y), a small line segment with slope f(t, y). An example of a slope
field for a function f(t, y) is plotted in Figure 2.1. The small line segments drawn are
called mini tangent lines – you can disregard the arrowheads drawn as the only essential
feature is the slope of these lines (and not their direction).

Figure 2.1: A slope field
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Given a function f(t, y) and its corresponding slope field, we say that C is an integral
curve for this slope field if C is a smooth curve (continuous with well-defined tangent
lines) such that, at each point (t, y) through which C passes, the tangent line (or direction
vector) of C is parallel with the mini tangent lines of the slope field. Loosely speaking, an
integral curve C is a path whose direction is determined by the mini tangent lines of the
slope field. Figure 2.2 shows three integral curves for the slope field shown in Figure 2.1.

Figure 2.2: Three integral curves

Let’s suppose now that y is a continuously differentiable function. As the derivative
of y represents the tangent slope of the graph of y = y(t) in the t-y plane, for y to
be a solution to the differential equation dy/dt = f(t, y), we want the graph of y to
be parallel to the mini tangent lines of the slope field defined by f(t, y) at each point
(t, y). More precisely, we want the graph of y to be an integral curve for this slope field.
Correspondingly, the three integral curves depicted in Figure 2.2 analogously depict three
solutions to the differential equation dy/dt = f(t, y). Let’s summarize this observation:

The graph of a solution y(t) to the differential equation

dy

dt
= f(t, y)

is an integral curve C for the slope field corresponding to f(t, y).

To get some practice drawing slope fields and visualizing integral curves and solutions, it
is illustrative to consider a few example.
Note here.

Example 10
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Consider the differential equation

dy

dt
= ty2.

The slope field for f(t, y) = ty2 is illustrated in Figure 2.3 for −4 ≤ t ≤ 4 and
−4 ≤ y ≤ 4.

Figure 2.3: A slope field for f(t, y) = ty2

In looking at the figure, we can get a good idea of what the integral curves should
look like. Luckily, as this differential equation is separable, we can also find some
solutions explicitly by the method of separation of variables. Let’s do this.

We have ∫
1

y2
dy =

∫
t dt

or, equivalently,

− 1

y(t)
=
t2

2
+ C

for some constant C. Solving this equation for y = y(t), we obtain the family of
solutions of the form

y(t) =
−2

t2 + C
.

The method of separation of variables also misses a rather obvious solution: The
constant solution y(t) = 0 for all t (which you should check directly is a solution).
This solution is interesting for a couple of reasons. First, it cannot be found using
the method of separation of variables – this gives credence to calling separation of
variables a method and nothing more. Secondly, it is what’s known as an equi-
librium solution. Such solutions will be seen to be extremely important from a
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qualitative/macroscopic perspective. Figure 2.4, illustrates the equilibrium solution
y = 0 along with the solutions

y(t) =
−2

t2 ± 1
.

Figure 2.4: A slope field for f(t, y) = ty2

In studying these solutions, it should be noted that, for all three solutions illus-
trated,

lim
t→∞

y(t) = 0.

In other words, the three solutions tend to the equilibrium solution y = 0 in as t
becomes large; in fact, this is true for all solutions to this differential equation. This
“drift toward equilibrium” is an incredibly important concept.

Example 11

Consider the differential equation

dy

dt
= y − t.

The slope field for f(t, y) = y − t is illustrated in Figure 2.5 for −2 ≤ t ≤ 2 and
−2 ≤ y ≤ 4.
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Figure 2.5: A slope field for f(t, y) = y − t

In looking at the figure, we can get a good picture of what we expect for our integral
curves. As this differential equation is linear we can find all solutions, and hence
integral curves, explicitly. Let’s rewrite the equations as

dy

dt
− y = −t,

and compute the integrating factor

µ(t) = exp

(∫
−1 dt

)
= e−t.

In view of Theorem 2.2.1, the general solution is

y(t) =
1

e−t

∫
(−t)e−t dt+

C

e−t

= e−t
(
te−t + e−t

)
+ Cet

= 1 + t+ Cet.

Figure (2.6) illustrates several solutions to this differential equation. It is interesting
to note that most (all except that for which C = 0) diverge from the line t 7→ t+1 as
t→ ∞ and converge to this line as t→ −∞. This is another example of “equilibrium
behavior”.
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Figure 2.6: A slope field for f(t, y) = y − t and some integral curves

Now, it’s your turn.

Exercise 8

For each of the three differential equations below, do the following:

a. Sketch a slope field on the grid −4 ≤ t, y ≤ 4. Please draw the most accurate
sketch you can and include at least 20 distinct mini tangent lines.

b. Sketch a number (≥ 4) of integral curves/graphs of solutions. Please do this on
top of the slope field and use different colors.

c. Consider, in particular, the solution y = y(t) whose graph passes through (0, 1).
Without explicitly solving the equation, describe the behavior of this solution as
t→ ∞.

1.
dy

dt
= y(4− 2y)

2.
dy

dt
= sin(y)

3.
dy

dt
= t− y

The following is a useful exercise. It will help you to think about how exactly slope fields
are generated from the function f(t, y). The exercise makes you think about the cases in
which f(t, y) is only a function of t or only a function of y. In doing this exercises, it is
important to remember that the value of f(t, y) determines the slope of the mini tangent
lines in a slope field at (t, y).
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Exercise 9

1. Consider a differential equation of the form

dy

dt
= g(t)

where g(t) is graphed in the following figure.

Sketch the slope field corresponding to this differential equation and illustrate
some possible solutions. Please label the slope field and solutions in different
colors.

2. Consider a differential equation of the form

dy

dt
= g(y)

where g(y) is graphed in the following figure.

Sketch the slope field corresponding to this differential equation and illustrate some
possible solutions. Please label the slope field and solutions in different colors.
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In the context of slope fields and integral curves, we are now ready to understand initial
value problems graphically. Consider the differential equation

dy

dt
= f(t, y) (2.9)

and the associated initial value problem
dy

dt
= f(t, y)

y(t0) = y0.

(2.10)

Recall, a solution to (2.10) is, by definition, a once continuously differentiable function
y = y(t) which solves the differential equation 2.9 and also satisfies the initial condition
y(t0) = y0. In other words, the graph of a solution y = y(t) to the initial value problem
is an integral curve passing through the point (t0, y0). In this context, (t0, y0) is called
an initial point. This is illustrated in the Figure 2.7.

Figure 2.7: Integral curve through the initial point (t0, y0)

In view of the connection between solutions and integral curves, to solve an initial value
problem of the form (2.10), one seeks an integral curve C = C(t0,y0) passing through the
initial point (t0, y0); this integral curve will be, at least locally, the graph of a solution
y = y(t) to the initial value problem.

Exercise 10

In this exercise, we study the correspondence between integral curves passing through
initial points and solutions to initial value problems. To this end, consider the
differential equation

dy

dt
= − t

y
. (2.11)
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1. Carefully sketch the slope field for (2.11) on the domain D = {(t, y) : −2 ≤ t ≤
2,−2 ≤ y ≤ 2}. Note: By convention, you should draw vertical mini tangent
lines at points for which y = 0. Also, think about why this convention would
make sense.

2. In your slope field, sketch an integral curve C = C(t0,y0) through the initial
point (t0, y0) = (0, 1). Hint: Your answer should be a closed curve passing
through (1, 0), (0,−1) and (−1, 0).

3. In light of your answer to the previous question, is it possible for there to be
a singlea function y = y(t) whose graph is (all of) C? Why or Why not?

4. Can C be described by an algebraic equation of the form

p(y, t) = C

where p is a polynomial in the variables y and t and C is a constant? If so,
what is this algebraic equation?

5. Use separation of variables to find a solution y = y(t) to the initial value
problem {

dy

dt
= − t

y
y(0) = 1

and answer the following.

(a) Does the graph of this solution also pass through (0,−1)? Why or why
not?

(b) Does the graph of your solution pass through (1, 0)? Further, discuss the
behavior of y(t) and y′(t) as t↗ 1, i.e., as t approaches 1 from the left.

(c) In what sense does your solution y = y(t) agree or differ from your alge-
braic equation p(y, t) = C?

The moral of the example is this: While the graphs of solutions to first-order ordinary
differential equations give rise to integral curves, they often only describe portions
of more “complete” integral curves. Hence, not every integral curve can be gotten
as the graph of a solution.

aIn other words, does there exists a single-valued function?

2.3.1 Equilibrium Solutions

Through out our studies in this section, we have observed a number of examples of
differential equations whose solutions exhibited “equilibrium behavior”. To understand
this behavior, it is useful to have the following vocabulary.

Definition 2.3.1 (Equilibrium Solution). An equilibrium solution to the first-order dif-
ferential equation

dy

dt
= f(t, y) (2.12)

is, by definition, a solution which is identically constant. In other words, a solution y(t)
to (2.12) is an equilibrium solution to (2.12) if y(t) = γ for all t where γ is a constant.
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Example 12

Consider the differential equation

dy

dt
= ty(1− y).

Observe that the constant function y defined by y(t) = 1 for all t ∈ R satisfies the
differential equation because

dy

dt
=

d

dt
(1) = 0 = t · 1(1− 1) = t · y(t)(1− y(t))

for all t ∈ R. Hence y(t) = γ = 1 is an equilibrium solution. By precisely the
same argument, we have that the zero function, y(t) = γ = 0 for t ∈ R, is also an
equilibrium solution.

In general, for y(t) = γ to be an equilibrium solution, one must always have that

0 =
d

dt
γ =

dy

dt
= f(t, y(t)) = f(t, γ)

for all t. Conversely, if γ is a real number for which f(t, γ) = 0 for all t ∈ R, we can
easily see that this number defines an equilibrium solution, y, given by y(t) = γ for t ∈ R.
For this reason, the numbers γ which solve the equation f(t, γ) = 0 for all t are called
equilibrium values for the differential equation (or for the function f(t, y)). We summarize
these observations as follows.

Proposition 2.3.2. For the differential equation

dy

dt
= f(t, y),

the constant function y(t) = γ is an equilibrium solution if and only if the number γ is
an equilibrium value.

Of course, in looking at the previous example, the equilibrium solutions y(t) = 0 and
y(t) = 1 corresponded to the equilibrium values 0 and 1 for the function f(t, y) = ty(1−y).
The take-away of the proposition above is that, to search for equilibrium solutions, it
suffices to search for equilibrium values for the function f(t, y). As we have seen in
previous examples in this section, and is often the case, equilibrium solutions will often
be seen to have the property that they attract or repel solutions nearby solutions in the
t→ ∞ limit.

Exercise 11

Suppose that the constant function y(t) = 1 is a solution to the differential equation

dy

dt
= f(t, y) (2.13)

where f(t, y) is a continuous function on R2.

1. Based only on this information, what can you say about the function f(t, y)?

2. What can you say about the slope field for (2.13)? How much of it can you
sketch?
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3. What can you say about solutions to the initial value problem{
dy

dt
= f(t, y) y(0) = 1?

4. Can anything be said about solutions to the initial value problem{
dy

dt
= f(t, y) y(0) = y0

where y0 ̸= 1?

Exercise 12

In this exercise, we revisit the differential equations

dy

dt
= ty2 (2.14)

and
dy

dt
= y − t (2.15)

which we considered in our introduction of slope fields and integral curves.

1. Find all equilibrium values and equilibrium solutions to (2.14).

2. In looking back at our slope field analysis for (2.14), describe the long-time
behavior of integral curves near the equilibrium solutions. Be as precise as
possible. For instance, you could say “For each integral curve above/below the
graph of the equilibrium solution with value y0, the curve drifts toward/away
from the equilibrium solution at t→ ±∞”.

3. Are there equilibrium solutions for (2.15)? If so, describe them. If not, explain
why none exist.

4. Regardless of your answer to the previous item, in Example 11 we discussed the
nature of integral curves for (2.15) drifting toward the graph of the function
t 7→ t+ 1. To see this as a equilibrium behavior, we set

y(t) = (t+ 1) + u(t)

where y and u are unknown functions. Find a differential equationa for u
(which will be linear and homogeneous) with the property that u solves this
differential equation if and only if y solves (2.15).

5. Given your differential equation in u found in the previous item, what are its
equilibrium values/solutions? Explain roughly why this shows y(t) = t + 1
should be interpreted as a (quasi) equilibrium solution.

aIn fact, transforming one differential equation into a simpler one is a handy technique. In this
case, finding all solutions for the differential equation in u will yield all solutions for the differential
equation (2.15). Do you see why? Would these solutions in y be consistent with those found in
Example 11?
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2.3.2 Autonomous equations and the classification of equilibria

In this subsection we turn our attention to a special class of differential equations called
autonomous differential equations. A first-order ordinary differential equations is said to
be autonomous if it is of the form

dy

dt
= h(y) (2.16)

where h is only a function of y. In other words, an autonomous first-order differential
equation is one which does not explicitly depend on time. You should observe that
autonomous first-order equations are separable. Though these equations are relatively
easy to solve, their generalizations, autonomous systems, which we shall study later in
these notes are complicated objects whose solution are elusive. For this reason, it’s
instructive to develop some machinery to understand qualitative behavior of solutions to
autonomous equations – this machinery will extend into the realm of autonomous systems.
Let’s motivate this machinery by looking at a specific example.

Example 13

Consider the autonomous differential equation

dy

dt
= y(y − 1)(y + 1)2.

Figures 2.8 and 2.9 below illustrates the function h(y) = y(y − 1)(y + 1)2 and the
slope field for this differential equationa.

Figure 2.8: h(y) vs y
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Figure 2.9: The slope field for dy/dt = h(y)

In studying the function h(y) = y(y − 1)(y + 1)2, we immediately see that there are
three equilibrium values, y = −1, 0 and 1. These equilibrium values can be seen by
looking at Figure 2.8 and the corresponding equilibrium solutions are clearly seen in
Figure 2.9. Taking for granted that there is one and only one solution to each initial
value problemb, we see immediately that, if y0 = −1, 0 or 1, the solution y = y(t) to
the initial value problem 

dy

dt
= y(y − 1)(y + 1)2

y(0) = y0

(2.17)

has the property that limt→∞ y(t) = y0. This is, of course, a simplistic observation:
any solution beginning at an equilibrium value is an equilibrium solution and will
therefore take the same value for all time. It is therefore natural to ask: What
is the large-time behavior of solutions whose initial values are close to (but not
exactly) equilibrium values? In other words, what happens asymptotically to integral
curves which come close to the equilibria? To address this question, let’s consider
the solution to (2.17) where y0 takes values near (but not equal to) −1, 0 and 1.
The figure below illustrates six solutions (only for t ≥ 0) corresponding to y0 =
−1.1,−0.9,−0.1, 0.1, 0.9 and 1.1.
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Figure 2.10: Six integral curves

Observe that, for the solutions y(t) starting near the equilibrium at y = 0, i.e.,
those for which y(0) = ±0.1, we have limt→∞ y(t) = 0. In other words, the solutions
close to the equilibrium value 0, converge on this equilibrium value in large time.
By contrast, the solutions starting near the equilibrium value 1 drift away from this
value in large time. In particular, for the solution with initial condition y(0) = 1.1,
we have limt→∞ y(t) = ∞ and, for the solution with initial condition y(0) = 0.9, we
have limt→∞ y(t) = 0. Finally, and stranger still, the solutions starting just slightly
below y = −1 converge to −1 in large time while solutions starting just above −1,
drift away from −1 in large time. In fact, the following is true: If y(t) solves the
initial value problem (2.17), then

lim
t→∞

y(t) =


∞ y(0) > 1

1 y(0) = 1

0 −1 < y(0) < 1

−1 y(0) ≤ −1.

This equilibrium behavior can be easily seen by studying Figure 2.10.

aObserve that the slope field has the property that its mini tangent lines are parallel along any
horizontal line – this is characteristic of autonomous equations.

bThis is true in this case. We will have to tools to show it in the next section

The preceding example illustrates the vastly different character of equilibria. Studying
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the situation closely, in particular Figure 2.8 it is apparent the the sign (and change
thereof) of h(y) near equilibria was the determining factor in this long time behavior.
This leads us to the following definition.

Definition 2.3.3. Let y0 be an equilibrium value for the autonomous differential equation

dy

dt
= h(y)

where h is a continuous function near y0.

1. If, on some neighborhood3 of y0, h(y) > 0 for y < y0 and h(y) < 0 for y > y0, we
say that y0 is a sink.

2. If, on some neighborhood of y0, h(y) < 0 for y < y0 and h(y) > 0 for y > y0, we
say that y0 is a source.

3. If y0 is neither a sink nor a source, we say y0 is a node.

Sinks are said to be stable equilibria, while sources and nodes are said to be unstable.

Though the above definition seems somewhat complicated, what it’s saying is this: If,
at an equilibrium value y0 at which h has a downcrossing, i.e., h(y) changes sign from
positive to negative as y increases, then y0 is a sink. If h has an upcrossing at y0, i.e.,
h(y) changes sign from negative to positive as y increases, then y0 is a source. If it isn’t
a sink or a source, it’s a node. In looking to the preceding example, we see that 0 is a
sink, y = 1 is a source and y = −1 is a node.

Of course, if h(y) is a differentiable function, the derivative of h at an equilibrium point y0
can help used to indicate the way in which h’s graph crosses the horizontal axis (provided
it does cross it) and so it can help indicate if the equilibrium value is a source or sink.
This is captured by the following proposition.

Proposition 2.3.4. Let y0 be an equilibrium value for the autonomous differential equa-
tion

dy

dt
= h(y).

and suppose that h(y) is differentiable at y0.

1. If h′(y0) < 0, then y0 is a sink.

2. If h′(y0) > 0 then y0 is a source.

3. If h′(y0) = 0, nothing can be said and further analysis is required.

Example 14: Revisiting the previous example

For the differential equation (2.17), we found equilibrium values −1, 0 and 1. Let’s
apply the proposition above to see if we can classify these equilibria and confirm what
we already understand. First, the function h(y) = y(y − 1)(y + 1)2 is a polynomial
and is therefore differentiable at the equilibrium values. We have

∂h

∂y
(y) = (y − 1)(y + 1)2 + y(y + 1)2 + 2y(y − 1)(y + 1)

= (y + 1)(4y2 − y − 1)

3By a neighborhood of y0, we mean an interval of the form I = (y0 − δ, y0 + δ) for some positive
number δ. Thus, by saying that y0 is a sink, we mean there is some positive number δ for which h(y) > 0
whenever y0 − δ < y < y0 and h(y) < 0 whenever y0 < y < y0 + δ.
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for y ∈ R. At y = 0, we see that

h′(0) = (0 + 1)(4 · 02 − 0− 1) = −1 < 0

and so, in view of the preceding proposition, we confirm that 0 is a sink. At y = 1,
we see that

h′(1) = (1 + 1)(4 · 12 − 1− 1) = 4 > 0

and so, as we already knew, 1 is a source. Finally, at y = −1, we see that

h′(−1) = (−1 + 1)(4 · (−1)2 − (−1)− 1) = 0

and so the above proposition isn’t able to classify this equilibrium value. Of course,
y = −1 is easily seen to be a node.

Example 15: A skydiver in freefall

During freefall, a skydiver who is accelerated toward earth by the gravity also en-
counters air resistance. Close to earth, the gravitational force can be modeled by
Fg = mg where m is the mass of the skydiver (in kg) and g = 9.81m/s2. Knowing
that air resistance opposes motion of the skydiver and is stronger at higher speeds,
it is modeled by Fa = −kv where v is the velocity of the skydiver and k > 0 is a
constant depending on the shape of the skydivera; k has units of kg/s. In principal,
if the skydiver presents a large shape/cross section to the air in freefall, then the
value of k will be large. Appealing the Newton’s second law, we find

ma = mv̇ = Fg + Fa = mg − kv

and so we obtain
v̇ = g − (k/m)v

where v is the velocity of the skydiver and v̇ = dv/dt is the acceleration. This equa-
tion is an autonomous first-order differential equation. Let’s study the equilibrium
behavior. We put

h(v) = g − (k/m)v = 0

and obtain a single equilibrium value, vT = v = mg/k. Of course, h is differentiable
at vT and we find

h′(vT ) = 0− (k/m) · 1 = −k/m < 0

from which we conclude that v0 is a sink in view or Proposition 2.3.4. Applying
our techniques of qualitative analysis, we see that, regardless of the skydivers initial
(vertical) velocity relative to Earth, the velocity of the skydiver will approach the
value vT = mg/k in time, i.e.,

lim
t→∞

v(t) = vT = mg/k.

For this reason, vT is called the terminal velocity of the skydiver. It is dependent,
in particular, on the skydiver’s mass and shape and the gravitational constant g.

We note that the above differential equation can be solved explicitly, as it’s a
linear first-order inhomogeneous equation. It’s easy to verify (and you should) that

v(t) = mg/k + (v0 −mg/k) e−kt/m
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solves the initial value problem{
v̇ = g − (k/m)v, v(0) = v0

where v0 is the skydiver’s initial velocity. From this solution, it’s easy to see that
limt→∞ v(t) = mg/k as our qualitative analysis predicted.

aOf course, k should also depend on the density of air, which is a function of altitude, and
therefore cannot truly be constant provided the skydiver falls a significant distance.

Exercise 13

Given the following autonomous differential equations, do the following:

1. Find all equilibrium values and their corresponding equilibrium solutions.

2. For each equilibrium value, determine if it’s a sink, source or node.

3. Give a rough sketch of the corresponding slope field and integral curves (enough
to include the equilibria) and make comment to the behavior of solutions with
initial values near the equilibrium values.

a.
dy

dt
= y(1− y)

b.
dy

dt
= 1− y2

c.
dy

dt
= y3

d.
dy

dt
=

{
y(1− y) y > 0
1
2y y ≤ 0.

Upon looking back at all of our work in this subsection, there seems to be one glaring
omission (and you should see if you can find it before reading further). To pinpoint
this omission, let’s recap what we’ve done. In general, we spent a lot of effort studying
autonomous first-order differential equations of the form (2.22) and their equilibrium
values. In particular, we studied the behavior of the function h(y) near these equilibrium
values and gave names (sink, source, node) to them based on h’s behavior. This study
and our vocabulary for it were essentially motivated by our observations in one single
example. In that example, we observed that solutions starting out near a sink happened
to converge to that equilibrium value, i.e., solutions with initial values near 0 tended to 0
in large time. We also observed that solutions starting near a source (in that case y = 1)
tended away from the source in large time. Beyond this example we’d like to infer that, in
some generality, this large time behavior of solutions with initial values near equilibrium
values is determined by the type (sink, source, node) of equilibrium4. Pushing beyond
our intuition, the following proposition provides a partial result in that direction.

4For otherwise, it would have been a little silly to name them.
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Proposition 2.3.5. Let γ be a sink for the autonomous first-order equation

dy

dt
= h(y)

and let O = (κ, ρ) be an interval containing γ for which h(y) > 0 for all κ < y < γ
and h(y) < 0 for all γ < y < ρ. Given y0 ∈ O and real numbers α < t0, suppose
that y = y(t) ∈ C1(α,∞) (meaning y is once continuously differentiable on the interval
(α,∞)) is a solution to the initial value problem{

dy

dt
= h(y) y(t0) = y0.

Then y(t) converges to the equilibrium value γ as t→ ∞, i.e.,

lim
t→∞

y(t) = γ.

Before proving the proposition, it’s helpful to first treat the following lemma5.

Lemma 2.3.6. Assume the hypotheses and notation of Proposition 2.3.5. If, for any
t0 ∈ [t0,∞), y(t1) = γ, then y(t) = γ for all t ≥ t1 and so

lim
t→∞

y(t) = lim
t→∞

γ = γ.

In other words, if the solution y(t) coincides with the equilibrium (sink) value γ at any
point, it remains there forever.

Proof. Let us assume, to reach a contradiction, that y(t1) = γ but y(t2) ̸= γ for some
t2 > t1. By the continuity of y, we may assume that t2 is chosen so that y(t2) ∈ O. In
the case that γ = y(t1) < y(t2) < ρ, set τ1 = max{t ∈ [t1, t2] : y(t) = γ}, that is, τ1
is the largest6 element in the interval [t1, t2] for which y(t) = γ. By construction (and
the intermediate value theorem), it follows that γ = y(τ1) < y(t) for all t ∈ (τ, t2]. Now,
let τ2 = min{t ∈ (τ1, t2] : y(t) ≥ y(t2)}. By construction, the continuity of y, and the
intermediate value theorem, it follows that y(τ2) = y(t2) < ρ and γ = y(τ1) < y(t) <
y(τ2) = y(t2) < ρ for all t ∈ [τ1, τ2]. An appeal to the mean value theorem gives a number
ξ ∈ [τ1, τ2 for which

y(τ2)− y(τ1) = y′(ξ)(τ2 − τ1).

Since y(τ2) > y(τ1) we find that y′(ξ) > 0. However, since ξ ∈ [τ1, τ2],γ < y(ξ) < ρ and
therefore 0 > h(y(ξ)) = y′(ξ), our desired contradiction. In the case that κ < y(t2) <
y(t1), an analogous argument also yields a contradiction. Consequently, no such t2 exists
and so y(t) = γ for all t ≥ t1.

Proof of Proposition 2.3.5. We shall consider the situation in which κ < y0 ≤ γ; the proof
is similar when γ < y0 < ρ. If y0 = y(t0) = γ, the desired result follows immediately
by the preceding lemma. We therefore assume that κ < y0 < γ. In this situation, we
have that y′(t0) = h(y(t0)) = h(y0) > 0 and, by the continuity of y, there must be an
interval of the form I = [t0, β) on which y(t) is strictly increasing. From this, there are
two possibilities.

5A “lemma” in mathematics is a factual statement which is (usually) used in the proof of a theorem
or proposition (which are themselves also factual statement).

6In fact, τ should be first defined as a supremum. The continuity of y then guarantees that it is indeed
a maximum.
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Possibility 1: y(t) is a strictly increasing function for all t > t0. In this case, we necessarily
have κ < y0 = y(t0) < y(t) for all t. If there is some t1 for which y(t1) ≥ γ, then the
intermediate value theorem ensures that y(t) coincided with γ and so the desired result
follows directly from the lemma. We therefore assume that κ < y0 = y(t0) < y(t) < γ for
all t. Given that y is strictly increasing, we have

κ < y0 < lim
t→∞

y(t) =: η ≤ γ,

in particular, this limit exists. Our goal now becomes to show that η = γ and we will
do this by appealing to the mean value theorem. Observe that, for each t ∈ [t0,∞), the
mean value theorem guarantees ct ∈ [t, t+ 1] for which

y(t+ 1)− y(t) = y′(ct)(t+ 1− t) = y′(ct) = h(y(ct)).

Observe that, since t < ct < t+ 1 for all t <, as t→ ∞, ct → ∞. Consequently,

0 = η − η = lim
t→∞

(y(t+ 1)− y(t)) = lim
t→∞

h(y(tc)) = h( lim
t→∞

y(tc)) = h(η)

in view of the continuity of h. Recalling that η ∈ (κ, γ] ∈ O, it follows that η = γ (for
otherwise h(η) > 0) and so

lim
t→∞

y(t) = γ.

Possibility 2: y(t) is not strictly increasing on [t0,∞). If y(t) ≥ γ for some t ≥ t0, the
solution y(t) necessarily coincides with γ and so the result follows from the preceding
lemma. It remains to rule out the case that y(t) < γ for all t > t0.

To this end, we assume, to reach a contradiction, that y(t) < γ for all t > t0. The
assumption that y is not strictly increasing guarantees that there is a number t1 > t0
such that y(t1) ≤ y0 = y(t0). Given that y is necessarily strictly increasing initially, i.e.,
strictly increasing on an interval of the form [t0, β), the inequality y(t1) ≤ y(t0) implies
that y has a local maximum between t0 and t1; this follows from the mean value theorem.
If t ∈ [t0, t1] makes y(t) a local maximum, then y′(t) = 0 and we set τ to be the minimum
of such values, i.e., τ = min{t ∈ [t1, t2] : y

′(t) = 0}. By the continuity of y′, we have
h(y(τ)) = y′(τ) = 0. Given that y(t) is strictly increasing on [t0, β), it must be the case
that y0 = y(t0) < y(t) ≤ y(τ) < γ for all t ∈ [t0, τ ]; any other arrangement would produce
a local extremum between t0 and τ thus contradicting the definition of τ . However, this
is impossible for it would imply that h(y(τ)) > 0 because κ < y0 < y(τ) < γ; this is our
desired contradiction.

2.4 Existence and uniqueness: The Picard-Lindelöff
theorem

In this section, we investigate the existence and uniqueness of differential equations and
their corresponding initial value problems. Precisely, given a first-order ordinary differ-
ential equation

dy

dt
= f(t, y)

we ask the following two questions:

Q1. Given an initial value y0 and time t0, when does there exist a solution y(t) (which
is, at least, continuously differentiable near t0) to the corresponding initial value
problem 

dy

dt
= f(t, y)

y(t0) = y0?
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Q2. If the answer to the previous question Q1 is “yes”, when is y(t) the only solution
satisfying the initial condition y(t0) = y0?

From a graphical perspective (in terms of slope fields and integral curves), these two
questions can be rephrased as follows:

Q1g Given an initial point (t0, y0) in the slope field defined by f(t, y), when does there
exist an integral curve for this slope field passing through the point (t0, y0)?

Q2g If there is an integral curve passing through this initial point (t0, y0) in the slope
field for f(t, y), when is this the only such integral curve?

As we shall see, these questions and their answers makeup a rather delicate and technical
business. To sort things out satisfactorily, we will need to worry about rather technical
aspects of functions (domains, domains/regions of continuity and differentiability, etc.).
First, to illustrate why the answer to these questions isn’t completely straightforward, we
consider two examples.

Example 16: When Q1 goes wrong

Consider the initial value problem 
dy

dt
=
y

t

y(0) = 1.

(2.18)

We see that the function f(t, y) = y/t blows up near the initial time t0 = 0. Thus, for
a solution y(t) to the differential equation, its derivative must grow without bound
as t nears 0 and we suspect that, if a function satisfying the initial condition y(0) = 1
exists, it has to be pretty wild, perhaps too wild to be differentiable. Further, in
looking at the slope field for f(t, y) = y/t, Figure 2.11, we suspect that fitting an
integral curve through (0, 1) might be difficult.
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Figure 2.11: Slope Field for f(t, y) = y/t

As the following proposition shows, it’s impossible.

Proposition 2.4.1. There is no analytic solution to the initial value problem (2.18).

Proof. Let’s assume, to reach a contradiction that there exists an interval I contain-
ing t0 = 0 and a function y ∈ C1(I) which satisfies the initial value problem (2.18).
Correspondingly, for all non-zero t ∈ I, we have

ty′(t) = t
dy

dt
(t) = y(t)

Given that y′ = dy/dt and y are continuous functions on I (because y ∈ C1(I)), we
have

y(0) = lim
t→0

y(t) = lim
t→0

ty′(t) = 0 · y′(0) = 0 ̸= 1,

our desired contradiction.
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Example 17: When Q2 goes wrong

Consider the initial value problem
dy

dt
= 3y2/3

y(0) = 0.

In seeking solutions to this initial value problem, we immediately observe that the
equilibrium solution, y(t) = 0 for t ∈ R does the trick, i.e., it satisfies the differential
equation for all time and also the initial condition y(0) = 0. So, in particular, Q1
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has an affirmative answer. To investigate Q2, we ask: Are there any other solutions
to this initial value problem? An application of separation of variables, in fact, gives
one immediately: The function ỹ defined by ỹ(t) = t3 is also a solution and satisfies
ỹ(0) = 0. As y(t) ̸= ỹ(t) for all t, these are distinct functions and hence distinct
solutions to the initial value problem. These solutions are both illustrated in the
Figure 2.12 below.

Figure 2.12: The solutions y and ỹ

The two preceding examples should bother you; they certainly bother me. Suppose, for
example, that the differential equation dy/dt = 3y2/3 describes the position of a particle
undergoing a force and starting at position 0 at time 0. Does the existence of multiple
solutions say something about nature? Does the particle experience two laws of nature and
two possible dynamical behaviors, both encoded in a single initial value problem? This
would present us with a philosophical conundrum (perhaps paralleled by those of quantum
mechanics). Mathematically, however, the problem with both differential equations is that
the functions y/t and 3y2/3 are badly behaved near the given initial points (t0, y0); the
first fails to be continuous and the second fails to be differentiable. The following theorem
shows that, so as long as f(t, y) isn’t too badly behaved near the initial point (t0, y0),
Questions Q1 and Q2 have affirmative answers.

Theorem 2.4.2 (Picard-Lindelöff). Let f = f(t, y) be defined, continuous and have
continuous partial derivative ∂f/∂y on the rectangle

R = {(t, y) : α < t < β, γ < y < κ} = (α, β)× (γ, κ);

here α, β, γ, κ are such that α < β and γ < κ. If (t0, y0) ∈ R, i.e., α < t0 < β and
γ < y0 < κ, then the differential equation

dy

dt
= f(t, y)
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has a unique solution y(t) passing through the initial point (t0, y0). More precisely, there
is one and only one function y(t) satisfying the initial value problem{

d

dt
y(t) = f(t, y(t)) y(t0) = y0

for all t ∈ I = (t0 − δ, t0 + δ) ⊆ (α, β); here, δ is some positive number and y(t) is
necessarily once-continuously differentiable7 on the interval I.

In reference to Theorem 2.4.2, we say that f satisfies the theorem’s hypotheses at the
point (t0, y0) if there is a rectangle R containing (t0, y0) and on which f satisfies the
hypotheses of the theorem, i.e., on this rectangle R, f is defined, continuous and has
continuous partial derivative ∂f/∂y.

Example 18

Returning to our first example of this section, i.e., that for which

f(t, y) =
y

t
.

We observe that, given any rectangle R containing the initial point (0, 1) in its inte-
rior, the function f(t, y) = y/t is necessarily discontinuous on this rectangle. Hence f
does not satisfy the hypotheses of the Picard-Lindelöff theorem at (0, 1). Of course,
this is no surprise as we demonstrated that no solution to this initial value problem
exists and hence the theorem’s conclusion is false.

Pertaining to our second example, i.e., that for which

f(t, y) = 3y2/3,

we observe that f is continuous on R2 and hence it’s continuous on every rectangle
R containing the initial point (0, 0). Computing the partial derivative of f with
respect to y, we obtain

∂f

∂y
(t, y) =

2

y1/3
.

This function is clearly discontinuous on any rectangle R containing the initial point
(0, 0). Consequently, f does not satisfy the hypotheses of the Picard-Lindelöff theo-
rem at (0, 0) and hence the theorem cannot guarantee the existence of unique solu-
tions for this initial point. As we observed, in fact, solutions to this corresponding
initial value problem are not unique.

In both of the above cases, the initial points for which y0 = 0 were problematic.
Both functions however do satisfy the hypotheses of Theorem 2.4.2 at any initial
point (t0, y0) for which y0 ̸= 0. Thus, in view of the theorem, there exists unique
solutions to these differential equations through any such initial point.

In many situation we’ve studied so far (separable and linear first-order initial differential
equations), we’ve been able to establish directly that solutions do exists for many initial
values. As these are simply methods for producing solutions, and nothing more, they
cannot be used to show if/when a given solution is unique. For this task, we must appeal
to the Picard-Lindelöff theorem. Along these lines, we revisit Theorem 2.2.1 and complete

7This means that y′(t) exists and is continuous on the interval I = (t0 − δ, t0 + δ). In this case, we
write y ∈ C1(I).
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its proof. To remind you, we left off by establishing a general form solutions to first-order
linear differential equations. It remains to show that, in fact, all solutions are of this
form.

Proof. Consider the linear first-order differential equation

dy

dt
+ a(t)y = b(t) (2.19)

where a(t) and b(t) are continuous on an interval I = (α, β). As we saw previously, for
any constant C, the function

y(t) =
1

µ(t)

∫
µ(t)b(t) dt+

C

µ(t)

is a solution to the differential equation (2.19) where µ(t) = eA(t) is the associated inte-
grating factor and A is an antiderivative of a. For simplicity, we shall write this as

y(t) = yp(t) +
C

µ(t)
(2.20)

where

yp(t) =
1

µ(t)

∫
µ(t)b(t) dt

is a differentiable function on the interval I. As stated above, to complete the proof of
the theorem, we must show that all solutions are of the form (2.20).

To this end, let’s first observe that (2.19) can be rewritten in the form

dy

dt
= f(t, y) = b(t)− a(t)y.

Given that a(t) and b(t) are continuous on the interval I = (α, β), we see the function
f(t, y) is continuous on the rectangle

R = {(t, y) : α < t < β, y ∈ R}.

Moreover,
∂f

∂y
(t, y) =

∂

∂y
(b(t)− a(t)y) = −a(t)

is also continuous on R. By an appeal to the Picard-Lindelöff theorem, given any initial
point (t0, y0) ∈ R, there exists a unique solution whose graph passes through (t0, y0).
Equivalently, for any real number y0 and time α < t0 < β, there exists a unique solution
to the initial value problem 

dy

dt
= b(t)− a(t)y

y(t0) = y0.

Let’s use this fact to complete the proof. Let ỹ(t) be an arbitrary solution to (2.19). By
definition, ỹ(t) must be a continuously differentiable function on some subinterval J of I.
Taking any element t0 ∈ J , we set y0 = ỹ(t0) and so trivially, this function ỹ satisfies the
above initial value problem for this y0. Observe that, by choosing C = µ(t0)(y0 − yp(t0)
in (2.20),

y(t0) = yp(t0) +
C

µ(t0)
= yp(t0) +

µ(t0)(y0 − yp(t0))

µ(t0)
= y0
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and hence y(t) = yp(t) + C/µ(t) for this particular C also satisfies this initial value
problem. In view of the Picard-Lindeöff theorem, the solutions y and ỹ must be the
same, i.e., our arbitrary solution ỹ is given by

ỹ(t) = yp(t) +
C

µ(t)
=

1

µ(t)

∫
µ(t)b(t) dt+

C

µ(t)
,

as desired.

The above proof completes our general theory concerning first-order linear differential
equations. We may now rightly call the given solutions general solutions. This theory
can be generalized slightly thereby obtaining general solutions under less restrictive hy-
potheses on a and b; however, this is unnecessarily general for our purposes. We now
widen our focus and study equations which are not linear nor separable and so, at least
at present, we don’t have analytic methods for finding solution. In this context, the
Picard-Lindelöff theorem is still useful for it guarantees the existence and uniqueness of
solutions without actually needing to find them. To this end, please do the following
exercise.

Exercise 14

Use Theorem 2.4.2 to show that, given an arbitrary initial point (t0, x0) in the t-x
plane, the initial value problem{

dx

dt
= x3 − t x(t0) = x0

has a unique solutiona.

aYou should note that this equation is not separable nor linear and so, by the methods we’ve
learned so far, we don’t know how to come up with a solution. In fact, a Mathematica query does
not yield a closed-form solution.

Exercise 15

This exercise will help to explain how y(t), guaranteed by Theorem 2.4.2, is only
defined on (t0 − δ, t0 + δ) and not necessarily on all of R. For the given initial value
problems, do the following:

1. Solve the initial value problem.

2. Find the natural domain of your solution y(t) and describe what happens to
the solution y(t) as t approaches the boundary/limits of its natural domain.

3. Explain why your observation in the above item is consistent with the conclu-
sion of the Picard-Lindelöff theorem.

a. 
dy

dt
= y5

y(0) = 1
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b. 
dy

dt
=

1

(t+ 1)2

y(0) = 1

Remark 2.4.3. Let’s make some final remarks about the Picard-Lindelöff Theorem and
what it guarantees.

1. The Picard-Lindelöff theorem tells us when our search for a solution to a differential
equation (or initial value problem) isn’t fruitless.

2. The theorem puts our slope field analysis on a correct and rigourous footing. It tells
us when there is one and only one integral curve passing though an initial point.

3. The theorem also gives credence to a new technique: guessing. That is, if in looking
for a solution to an initial value problem you somehow stumble on a solution, the
Picard-Lindelöff Theorem tells you (under certain conditions) that you can stop
looking.

4. Though the Picard-Lindelöff theorem guarantees when a solution exists, it does not
give a general method for finding it. In some cases, the theorem will ensure that a
solution exists though you could never write it down.

5. In view of the theorem, we can start saying “the” solution instead of “a” solution
when talking about initial value problems.

Exercise 16: Solution Curves

Given f : R2 → R, we consider the differential equation

dy

dt
= f(t, y),

and its corresponding slope field drawn in the t-y plane. For an ordered pair (t0, y0)
in the t-y plane, solving the initial value problem{

dy

dt
= f(t, y) y(t0) = y0 (2.21)

is equivalent to fitting a “smooth” curve through the point (t0, y0) whose tangent
lines match the slope field’s minitangent lines at every point. Such a curve through
the point (t0, x0) is called a solution curve and (t0, y0) is called an initial point. In
this context, the solution curve through the initial point (t0, y0) is the graph of the
solution y = y(t) to the initial value problem (2.21).

1. Suppose that f satisfies the hypotheses of Theorem 2.4.2 at the point (t0, y0).
How many solution curves can pass through the initial point (t0, y0)? Give a
one-sentence explanation of your answer.

2. Suppose now that f satisfies the hypotheses of Theorem 2.4.2 at every point
(t, y) in the t-y plane. Can any two-solution curves in the t-y plane intersect?
Give a one-sentence explanation of your answer.
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3. Let’s now consider the particular first-order autonomous differential equation

dy

dt
= 2
√

|y|,

i.e., where f(t, y) = 2
√
|y| for (t, y) ∈ R2. Does this f meet the hypotheses

of Theorem 2.4.2 at every point in the t-y plane? Please explain your answer,
i.e., show how each hypothesis is true or false.

4. Use separation of variables to solve the corresponding initial value problem{
dy

dt
= 2
√

|y| y(0) = 0.

If you’re worried about the absolute value, you can assume that if y(0) = 0,
y(t) ≥ 0 for all t for which y is defineda.

5. It is easy to check (and you should) that the zero function y(t) = 0 for all t
is an equilibrium solution to the preceding initial value problem. In light of
this and your work from the previous part, are solutions to this initial value
problem unique? Does this contradict the statement of Theorem 2.4.2?

6. Draw the slope field for the differential equation

dy

dt
= 2
√

|y|.

Does this slope field allow for intersecting solution curves? If so, draw them.

aIt’s also fun to think about starting at an initial value y(0) = y0 < 0. Here, you’ll have to be
a little more careful about the absolute value in the integrand.

Exercise 17

(Is it possible to cross equilibrium solution curves?) Consider the differential equa-
tion

dy

dt
= y(1− y). (2.22)

Note that 0 and 1 are equilibrium values for this equation and so this equation
admits the equilibrium solutions defineda by y(0)(t) = 0 and y(1)(t) = 1 for all t ∈ R.

a. Use Theorem 2.4.2 to show that, given any solution y(t) to (2.22) such that
y(0) > 0, we must have y(t) > 0 for all t for which the solution is defined. Hint:
The desired inequality can also be written as y(t) > y(0)(t) for all t.

b. Is it true that, given any solution y(t) to (2.22) such that 0 < y(0) < 1, we have
0 < y(t) < 1 for all t (for which the solution is defined)? Explain your answer.

c. Given f : R2 → R satisfying the hypotheses of Theorem 2.4.2 (on any/every
rectangle in the t-y plane) and the corresponding differential equation

dy

dt
= f(t, y),
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what can be said about solution curves crossing (or the inability for them to cross)
equilibrium values? Can you formulate a precise statement about thisb?

aThe superscripts are just to give tractable notation for the equilibrium solutions (they do not
represent derivatives or anything like that).

bYou are essentially being asked to generalize the results of Parts a and b. To this end, you
should think about what is really going on concerning uniqueness.

2.5 Exact Equations

In this section, we focus on another method for (analytically) solving (certain) first-order
differential equations. The differential equations we study here are called exact equation
and, to develop the theory surrounding these equations and their solutions, it is useful
to have a sturdy grasp on some multivariable calculus, especially the chain rule. The
following formulation of the chain rule will be useful to us.

Theorem 2.5.1 (A version of the chain rule). Let D ⊆ R2 be an open set and let
f : D → R have continuous first-order partial derivatives at every point (x, y) ∈ D. Also,
let I ⊆ R be an open interval and let x(t) and y(t) be continuously differentiable functions
on I, i.e., x, y ∈ C1(I), which satisfy (x(t), y(t)) ∈ D for every t ∈ I. Then the function
h : I → R defined by h(t) = f(x(t), y(t)) is continuously differentiable on I and

h′(t) =
∂f

∂x
(x(t), y(t))x′(t) +

∂f

∂y
(x(t), y(t))y′(t) (2.23)

for all t ∈ I.

In the statement of the above theorem, we have been precise about our hypotheses and
explicit about where the partial derivatives of f are being evaluated. Often, the above
formula for h′ is written simply as

h′ =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

where it is implied that ∂f/∂x and ∂f/∂y are evaluated at (x(t), y(t)) and dx/dt = x′,
dy/dt = y′, and h′ are evaluated at t ∈ I. Further, the hypotheses concerning f having
continuous first-order partial derivatives is actually stronger than really needed – one only
needs that f is differentiable in the sense of a two-variable function. For some background
on differentiability of multivariable functions and a “uniform” perspective of the chain
rule of which Theorem 2.5.1 is a special case, the reader is referred to Appendix B.

Exercise 18

Consider the function f(x, y) = x2 + y2 which is defined and has continuous first-
order partial derivatives on all of D = R2. For the following pairs (x(t), y(t)) of
functions, use the chain rule to compute h′(t) where h(t) = f(x(t), y(t)) for t ∈ R.

1. (x(t), y(t)) = (t2, t)

2. (x(t), y(t)) = (et, e−t)

3. (x(t), y(t)) = (cos(t), sin(t))

Also, by first computing h (and simplifying), explain why your answer for Item 3
makes sense.
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Exercise 19

Let ψ : R2 → R have continuous first-order partial derivatives everywhere (on the
whole of R2) and let y : R → R be differentiable everywhere (on the whole of R).
We consider the function h : R → R defined by

h(x) = ψ(x, y(x)) for x ∈ R.

1. Use the chain rule to show that

dh

dx
(x) =

∂ψ

∂x
(x, y(x)) +

∂ψ

∂y
(x, y(x))

dy

dx
(x) for x ∈ R.

2. Suppose that, for some constant C,

ψ(x, y(x)) = C for all x ∈ R.

Conclude that y satisfies the ordinary differential equation

M(x, y) +N(x, y)
dy

dx
= 0

where

M(x, y) =
∂ψ

∂x
and N(x, y) =

∂ψ

∂y
.

Now that we have the chain rule at our fingertips, we are ready to introduce a new class
of first-order differential equations which we are able to “solve”. As is customary in the
literature, we will denote our independent variable by x and the dependent variable by
y = y(x).

Definition 2.5.2. Let M(x, y) and N(x, y) be continuous functions on some (open) sub-
set D of R2 and consider the differential equation

M(x, y) +N(x, y)
dy

dx
= 0. (2.24)

This differential equation is said to be exact, if there exists a once-differentiable function
ψ : D → R for which

M(x, y) = ψx(x, y) =
∂ψ

∂x
(x, y) N(x, y) = ψy(x, y) =

∂ψ

∂y
(x, y)

for (x, y) ∈ D. Often, the function ψ is said to be a primitive of (2.24).

Given a primitive ψ(x, y) of an exact equation (2.24), the constraint equation

ψ(x, y) = C

where C is a constant, forces (under mild conditions8) y to be a continuously differentiable
function of x (at least locally). Correspondingly, y(x) satisfies

ψ(x, y(x)) = C

8The condition that ϕy = N ̸= 0 suffices in view of the implicit function theorem (See [14]).
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for all x for which y is continuously differentiable. On this domain, the chain rule Theorem
2.5.1 guarantees that

0 =
d

dx
C =

d

dx
ψ(x, y(x)) =

∂ψ

∂x
(x, y(x)) +

∂ψ

∂y
(x, y(x))y′(x)

= M(x, y(x)) +N(x, y(x))
dy

dx
(x)

and thus y = y(x) solves the differential equation 2.24. Thus, to solve an exact equation
with primitive ψ, one simply writes down the constraint equation

ψ(x, y) = C

and solves for y as a function of x.

Example 19

Consider the differential equation

(3x2 + y3) + 3xy2
dy

dx
= 0. (2.25)

Here M(x, y) = 3x2 + y3 and N(x, y) = 3xy2; both are continuous on R2. To seek
a primitive ψ, thereby determining if (2.25) is exact, we must have

ψ(x, y) =

∫
ψx dx =

∫
M(x, y) dx =

∫
(3x2 + y3) dx = x3 + xy3 + h1(y)

where h1(y) is an unknown function of y. Here, computing the (partial) indefinite
integral

∫
M dx means to find a function ψ whose partial derivative in x is M ; this

is precisely why the function h1(y) appears as any such function would be “killed”
by partial differentiation in x. Similarly

ψ(x, y) =

∫
ψy dy =

∫
N(x, y) dy =

∫
3xy2 dy = xy3 + h2(x)

where h2(x) is an unknown function of x. For the equation to be exact, these two
computations must be consistent, i.e., we should be able to identify functions h1(y)
and h2(x) for which

xy3 + h2(x) = ψ(x, y) = x3 + xy3 + h1(y).

By inspection, a choice of h1(y) = 0 and h2(x) = x3 does the job. Hence, the
differential equation (2.25) and has primitive

ψ(x, y) = x3 + xy3

which is differentiable on R2. It’s straightforward to check (as you should to double
check your computations) that ψx = M and ψy = N . Given any constant C, we
then see that the constraint equation

C = ψ(x, y) = x3 + xy3
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implicitly defines a solution y = y(x) to (2.25) . When x ̸= 0 (which rules out
C = 0), we can solve for y as a function of x. This gives the solution

y(x) = y =

(
C − x3

x

)1/3

=

(
C

x
− x2

)1/3

defined for all x ̸= 0. You should verify that this does indeed solve (2.25).

Remark 2.5.3. Given the constraint equation ψ(x, y) = C to an exact equation, it’s not
always easy (if possible) to solve explicitly for y as a function of x without appealing to
special functions of numerical methods. For example, given the primitive

ψ(x, y) = xey + y2

to the exact differential equation

ey + (xey + 2y)
dy

dx
= 0,

it isn’t possible by hand to solve the equation

xey + y2 = C

for y as a function of x (You should try it). In such cases, it is okay to leave the solution
in the so-called implicit form,

ψ(x, y) = C.

Remark 2.5.4. Unsurprisingly, solving initial value problems for exact differential equa-
tions amounts to determining the constant C in the constraint equation ψ(x, y) = C.
Whether or not the solution y(x) is found explicitly or left in implicit form, it is always
easiest to determine the constant C directly from the implicit form, i.e., before you solve
for y. This is done by simply plugging in the initial point (x0, y0) corresponding to the
initial condition y(x0) = y0 and hence

C = ψ(x0, y0).

Example 20

Consider the differential equation

(3x2 + y3) + 6xy2
dy

dx
= 0.

Following the same procedure in the previous example, we seek a primative ψ by
partial integration. We have∫

M(x, y) dx =

∫
(3x2 + y3) dx = x3 + xy3 + h1(y)

and ∫
N(x, y) dy =

∫
6xy2 dy = 2xy3 + h2(x).

For a primitive to exist, these computations must be consistent and so we seek
functions h1(y) and h2(x) for which

x3 + xy3 + h1(y) = 2xy3 + h2(x).
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Upon simplifying, this is the equation

x3 − xy3 = h2(x)− h1(y).

As the polynomial x3 − xy3 cannot be expressed as the difference of function h2(x)
and h1(y) which only depend on x and y respectively, we conclude that no choice
of h1 and h2 will work. Thus, no primitive exists and we conclude that the given
equation is not exact.

In studying the preceding two examples, we see that it can be somewhat involved to
determine whether or not a differential equation of the form (2.24) is exact. Fortunately,
there is an easy condition to check. If (2.24) is exact with primitive ψ, by virtue of
Clairaut’s theorem (the equality of mixed partials), we have

∂N

∂x
=

∂

∂x

(
∂ψ

∂y

)
=

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x
=

∂

∂y

(
∂ψ

∂x

)
=
∂M

∂y
.

provided that the partial derivatives ∂N/∂x and ∂M/∂y exist and are continuous. Thus,
for the equation (2.24) to be exact, it is necessary to have

∂M

∂y
=
∂N

∂x
.

provided these partial derivatives exist and are continuous. Fortunately, under certain
conditions9 on the common domain of M and N , the above conditions is also sufficient.
The following theorem captures a particularly simple case.

Theorem 2.5.5. Let the function M , N , ∂M/∂y and ∂N/∂x be continuous on the
rectangle

R = {(x, y) ∈ R2 : a < x < b, c < y < d}

where a, b, c and d are such that a < b and c < d (we allow the possibility that a = c = −∞
and b = d = ∞). Then (2.24) is an exact equation (in R) if and only if

∂M

∂y
(x, y) =

∂N

∂x
(x, y)

at each point in R.

Let us check our results of the previous two examples against the theorem above. For the
first example, we have

∂M

∂y
=

∂

∂y
(3x2 + y3) = 3y2 =

∂

∂x
(3xy2) =

∂N

∂x

for all (x, y) ∈ R2 and so, by virtue of the theorem, the corresponding differential equation
is exact. Of course, this is consistent with our result as we found the equation to have
primative ψ(x, y) = x3 + xy3. For the second example,

∂M

∂y
=

∂

∂y
(3x2 + y3) = 3y2 ̸= 6y2 =

∂

∂x
6xy2 =

∂N

∂x

and so the equation is not exact; this is the conclusion we found previously.

9This depends on a certain topological property of the domain of M and N which asks that the domain
has “no holes”. The technical term is called simply connected.
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Exercise 20

Using Theorem 2.5.5, determine whether or not each of the following equations is
exact or can be rewritten as an exact equation. If exact, find the solutiona (which
should involve an arbitrary constant C).

1.

(2x+ 3) + (2y − 2)
dy

dx
= 0

2.

(2x+ 4y) + (2x− 2y)
dy

dx
= 0

3.
(ex sin y − 2y sinx)dx+ (ex cos y + 2 cosx)dy = 0

4.

(9x2 + y − 1)− (4y − x)
dy

dx
= 0

5.
dy

dx
=

−2xy

1 + x2 + y2

aIf you can solve for y explicitly, please do it. If not, you can leave your solution in implicit
form.

Exercise 21

Given continuously differentiable functions M and N , each mapping R into R, use
Theorem 2.5.5 to show that

M(x) +N(y)
dy

dx
= 0

is exact. Conclude that separable equations are also exact.

2.6 A Brief Look at Numerics: Euler’s Method

In the course of this chapter, we have studied three methods for analytically producing
solutions to certain types of ordinary differential equations, namely separable, linear and
exact equations. There are many other interesting and powerful methods for producing
solutions which we do not treat here. Generally, our prescription has been to classify a
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given differential equation as a certain type and then apply the known method adapted
to solve equations of that type to produce a formula for the solution. Most differential
equations, especially those modeling real-life situations, do not fit into the types for which
analytic solution techniques are known. Often in practice, you will be given a differential
equation and corresponding initial value problem which you can verify has a unique so-
lution via the Picard-Lindelöff theorem but have no method for producing the solution.
We ask: How can we gain information about a solution without being able to write it
down? The answer is in approximation.

In this section, we discuss one method for numerically approximating solutions to initial
value problems. The method we treat here, called Euler’s method, is fantastically simple
and is perhaps the oldest known method for approximating solutions. It should be noted
that Euler’s method is rarely used in practice as it is suboptimal and computationally
expensive compared to more modern methods, such as Runge-Kutta. It is however an
illustrative of the flavor of numerical methods.
Consider and initial value problem of the form{

dy

dt
= f(t, y), y(t0) = y0. (2.26)

We assume that f(t, y) satisfies the hypotheses of the Picard-Lindelöff theorem near
the point (t0, y0) and therefore a unique solution y = y(t) exists and is continuously
differentiable on an interval of the form (t0− δ, t0+ δ). We shall assume additionally that
y is twice differentiable on this interval, i.e., that the second derivative y′′ exists at all
points in (t0 − δ, t0 + δ). In principle, we will know nothing additional about y. The goal
of Euler’s method is to produce a numerical scheme to approximate y on a subinterval
of the form I = [t0, T ] ⊆ (t0 − δ, t0 + δ). We want this numerical scheme to approximate
y(t) at a number of equally spaced times t0, t1, . . . , tN = T in the interval I. To this end,
we fix an integer N and set

tk = tk−1 + hN

for k = 1, 2, 3, . . . N where hN = (T − t0)/N is the so-called time step associated with
this partition of the interval I. Equivalently,

tk = tk−1 + hN = t0 + khN = t0 + k

(
T − t0
N

)
for k = 1, 2, . . . , N . With these points fixed, our goal is approximate the numbers
y(t0), y(t1), . . . , y(tk), . . . , y(tN ), i.e., the solution y evaluated at the times t0, t1, . . . , tN ,
by N + 1 numbers y0, y1, . . . , yN . Figure 2.13 illustrates this situation (with N = 5).

Obviously, we should choose y0 = y(t0) as we know y passes through the initial point
(t0, y0). To make a choice of y1, we make an appeal to Taylor’s theorem from calculus. As
y is twice differentiable on an interval containing t0 and t1 = t0 + hN , Taylor’s theorem
guarantees that

y(t1) = y(t0 + hN ) = y(t0) + y′(t0)hN +
y′′(ξ)

2!
h2N (2.27)

for some ξ ∈ (t0, t1). We note that this formula is exact and the existence of ξ is due to
the mean value theorem. Now, y(t0) = y0 and, because y solves the differential equation
on the interval (t0 − δ, t0 + δ), we know that

y′(t0) = f(t0, y(t0)) = f(t0, y0).
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Figure 2.13: The function y(t) and the discrete approximants y1, y2, . . . , y5.

With these observations in mind, (2.27) simplifies to

y(t1) = y0 + f(t0, y0)hN +
y′′(ξ)

2
h2N

In the case that 0 < hN < 1 is a small number, which can be produced by choosing N to
be a large integer, h2N even smaller and we would therefore expect10 the term

y′′(ξ)

2
h2N

to be small compared to y0 + f(t0, y0)hN . We therefore set

y1 = y0 + f(t0, y0)hN

to be our approximation for y(t1). Continuing in this manner we iteratively define

yk = yk−1 + f(tk−1, yk−1)hN (2.28)

for k = 1, 2 . . . , N thus producing our collection of so-called approximants y0, y1, . . . , yN
of the actual values of y(t) at t0, t1, . . . , tN . Given our discussion above, we heuristically
expect this approximation scheme to get better as hN → 0 or, equivalently, as N → ∞.
We summarize this approximation scheme as follows.

10At present, this is more of a “hope” than an expectation. We shall study this in detail in the next
section.
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Euler’s method

To approximate the solution y(t) to the initial value problem{
y′ = f(t, y), y(t0) = y0

on the interval I = [t0, T ], do the following:

1. Select an integer N .

2. Set hN = T−t0
N and put

tk = t0 + khN

for k = 1, 2, . . . .

3. Iteratively define
yk = yk−1 + f(tk−1, yk−1)hN

for k = 1, 2 . . . , N where t0 and y0 are those given in the initial condition.

This scheme approximates the values y(t0), y(t1), . . . , y(tN ) by the numbers
y0, y1, . . . , yN .

Example 21

To illustrate Euler’s method, it’s instructive to apply it to an initial value problem
whose solution we know and understand well. To this end, we consider the initial
value problem {

y′ = y, y(0) = 1.

Here, t0 = 0, y0 = 1 and f(t, y) = y. Of course, this is a linear homogeneous dif-
ferential equation. A moment’s thought shows that the unique solution is y(t) = et;
this is the function to which we will compare our linear approximation.

Let’s use Euler’s method to approximate y on the interval [0, 1] = [t0, T ]. For a
natural number N , we have hN = 1/N and

tk = t0 + khN =
k

N

for k = 1, 2, . . . , N . Following the approximation scheme, we have

yk = yk−1 + f(tk−1, yk−1)hN = yk−1 + yk−1hN =

(
1 +

1

N

)
yk−1

for k = 1, 2, . . . , N . Thus each yk is gotten from multiplying the previous iterate
yk−1 by (1 + 1/N). From this we obtain the formula

yk =

(
1 +

1

N

)k

y0 =

(
1 +

1

N

)k

for k = 0, 1, . . . , N . This figure below illustrates this approximation for N = 5.
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We observe, in this case, the approximants y1, y2, . . . , y5 are an underestimate for
the solution y(t) = et evaluated at the points tk = k/5 for k = 0, 1, . . . , 5. As we
discussed, we expect this approximation to get better as N → ∞, which is the case.
In particular, because tN = N/N = 1 for all N , we should expect

lim
N→∞

yN = y(1) = e.

Of course, you might remember from calculus, this is the famous sequential approx-
imation

e = lim
N→∞

(
1 +

1

N

)N

.

Exercise 22: Euler’s Method applied to Ricatti’s Equation

Consider the initial value problem{
y′ = t2 − y2 y(0) = 1. (2.29)

It is easy to verify that the initial value problem (2.29) has a unique solution y(t).
In this exercise, you use Euler’s method to approximate this solution on the interval
I = [0, 1]. To this end, do the following:

1. Verify that the differential equation y′ = t2 − y2 is not separable, linear or
exact. Use Wolfram Alpha, or any computational software you want, to find
an analytic solution to this initial value problem; this should involve the so-
called Bessel function of the first kind, a function defined via power series.
You don’t need to write down the solution, which is complicated, but please
include a copy of the software’s output.

2. Run Euler’s method for N = 4 for (2.29) on the interval I = [0, 1], by hand.
Please list your answer in a table of the form:

t0 t1 t2 t3 t4
y0 y1 y2 y3 y4
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3. On the course website, I have provided the Matlab m-file I used to run Euler’s
method for the initial value problem of the previous example. This m-file also
runs one of Matlab’s relatively sophisticated numerical approximation schemes,
“ode45”, for comparison. Adjust the m-file to the initial value problem (2.29)
and run it for N = 4, 10 and 100. Print your adjusted m-file and the plots.

2.6.1 The Error in Euler’s Method

For the initial step of Euler’s method, we approximated y(t1) by

y1 = y(t0) + y′(t0)(t1 − t0) = y0 + f(t0, y0)hN

where hN = t1−t0 = (T−t0)/N . Looking carefully, we see that this is nothing more than
a linear approximation of y centered at the initial point (t0, y0) and the approximant y1 is
simply the value gotten by evaluating this linear approximation at time t1. The absolute
error between y1 and y(t1) is then simply a measure of how much this linear approximation
differs from the function at t1. As we discussed, given that y is twice differentiable11, the
mean value theorem guarantees a number ξ1 between t0 and t1 for which

y1 = y(t1) = y(t0) + f(t0, y0)hN +
y′′(ξ1)

2
h2N = y1 +

y′′(ξ1)

2
h2N

and so the absolute error between y(t1) and y1 is

E1 = |y(t1)− y1| =
|y′′(ξ)|h2N

2
.

Provided that we can get some information concerning y′′, this error can be made arbi-
trarily small by taking N sufficiently large.

Figure 2.14: Aggregating Error in Euler’s Method

For the second iteration, getting a handle on the error E2 = |y(t2)− y2| is somewhat
more tricky. We recall

y2 = y1 + f(t1, y1)hN

which is, like y1, gotten by a linear approximation. In contrast to the first iteration, the
initial point used in this linear approximation is (t1, y1) which, unlike (t0, y0), does not

11See Exercise 24
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(usually) sit on the graph of y. Of course, since we don’t know the value of y(t1) exactly,
we can’t center our approximation at (t1, y(t1)) and the best (using Euler’s method)
we can do is center our approximation at the preceding approximant (t1, y1). This is
illustrated in Figure 2.14. For this reason, Euler’s method aggregates error: the absolute
error for each iteration Ek depends not only on the error produced by the linearization
but also on the previous absolute errors E1, E2, . . . , Ek−1. The following lemma helps us
to quantify this error.

Lemma 2.6.1. Consider the initial value problem{
dy
dt = f(t, y) y(t0) = y0

where we shall assume that f , ∂f/∂y and ∂f/∂t are bounded and continuous functions
on the whole of R2. Let M1 and M2 be positive constants for which∣∣∣∣∂f∂y (t, y)

∣∣∣∣ ≤M1

∣∣∣∣∂f∂t (t, y) +
(
∂f

∂y
(t, y)

)
f(t, y)

∣∣∣∣ ≤M2

for all (t, y) ∈ R2. Following Euler’s method, let T > t0, N be a natural number and
set hN = (T − t0)/N . Taking t0 and y0 as given by the initial value problem, for each
k = 1, 2, . . . , N , define

tk = t0 + khN ,

and
yk = yk−1 + f(tk−1, ytk−1

)hN .

Then, for each k = 1, 2, . . . , N , the absolute error Ek = |y(tk) − yk| between the solution
y(t) at time tk and its approximation yk satisfies

Ek ≤ (1 +M1hN )Ek−1 +
M2h

2
N

2
(2.30)

where E0 = |y(t0)− y0| = 0.

The inequality (2.30) essentially says that, at worst, the error in the kth approximation
depends on the error of the (k−1)th approximation, the step size hN , and certain bounds
concerning f and its first-order partial derivatives. Before giving the proof, which you
are strongly encouraged to read, it should be noted that the hypotheses of the result
(concerning continuity and boundedness on all of R2) are overly restrictive and can be
weakened significantly. The result is stated as is to give you the essential idea of what’s
going on while avoiding getting bogged down in non-essential details.

Proof. In view of the Picard-Lindelöff theorem, let y be the unique solution to the ini-
tial value problem. This function is necessarily once continuously differentiable on an
interval12 of the form I = (t0 − δ, t0 + δ) where δ > 0 and we shall assume that
[t0, T ] ⊆ [t0, t0 + δ). By virtue of Exercise 24 below, y(t) is twice continuously differ-
entiable on I and, for all such t,

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t)). (2.31)

The case for k = 1 is slightly easier than the others and so we will treat it separately:
As discussed previously, the mean value theorem guarantees a number ξ1 between t0 and

12In fact, the lemma’s hypotheses actually guarantee (by a stronger version of the Picard-Lindelöff
theorem) that the solution exists and is continuously differentiable on all of R.
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t1 for which

y(t1) = y(t0) + y′(t0)(t1 − t0) +
y′′(ξ1)(t1 − t0)

2

2

= y0 + f(t0, y0)hN +
y′′(ξ1)h

2
N

2

= y1 +
y′′(ξ1)h

2
N

2

where we have used the fact that y(t0) = y0 and y′(t0) = f(t0, y(t0)) = f(t0, y0). By
virtue of (2.31), we have

E1 = |y(t1)− y1| = |y′′(ξ1)|
h2N
2

=

∣∣∣∣∂f∂t (ξ1, y(ξ1)) + ∂f

∂y
(ξ1, y(ξ1))f(ξ1, y(ξ1))

∣∣∣∣ h2N2 .

In view of the lemmas hypotheses, we have∣∣∣∣∂f∂t (ξ1, y(ξ1)) + ∂f

∂y
(ξ1, y(ξ1))f(ξ1, y(ξ1))

∣∣∣∣ ≤M2

and therefore

E1 ≤ M2h
2
N

2
=
M2

1h
2
N

2
E0 +

M2h
2
N

2
.

Let us now focus on Ek where k = 2, 3, . . . , N . Upon fixing one such k, the mean value
theorem, there is ξk between tk−1 and tk for which

y(tk) = y(tk−1) + y′(tk−1)hN + y′′(ξk)
h2N
2

and so

y(tk)− yk = y(tk−1) + f(tk−1, y(tk−1))hN + y′′(ξk)
h2N
2

− (yk−1 + f(tk−1, yk−1)hN )

= (y(tk−1)− yk−1) + (f(tk−1, y(tk−1))− f(tk−1, yk−1))hN + y′′(ξk)
h2N
2

By applying the mean value theorem to the function y 7→ f(tk−1, y), the mean value
theorem guarantees a ỹ between y(tk−1) and yk−1 for which

f(tk−1, y(tk−1))− f(tk−1, yk−1) =
∂f

∂y
(tk−1, ỹ)(y(tk−1)− yk−1).

Combining these two identities yields

y(tk)− yk = (y(tk−1)− yk−1) +
∂f

∂y
(tk−1, ỹ)(y(tk−1)− yk−1)hN + y′′(ξk)

h2N
2

= (y(tk−1)− yk−1)

(
1 +

∂f

∂y
(tk−1, ỹ)hN

)
+ y′′(ξk)

h2N
2

and so

Ek = |y(tk)− yk| = |y(tk−1)− yk|
∣∣∣∣1 + ∂f

∂y
(tk−1, ỹ)hN

∣∣∣∣+ |y′′(ξk)|h2N
2

.

By an appeal to (2.31) the lemma’s hypotheses,∣∣∣∣1 + ∂f

∂y
(tk−1, ỹ)hN

∣∣∣∣ ≤ 1 +

∣∣∣∣∂f∂y (tk−1, ỹ)

∣∣∣∣hN ≤ 1 +M1hN
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and

|y′′(ξk)| =
∣∣∣∣∂f∂t (ξk, y(ξk)) + ∂f

∂y
(ξk, y(ξk))f(ξk, y(ξk))

∣∣∣∣ ≤M2.

Consequently,

Ek ≤ |y(tk−1)− yk−1|(1 +M1hN ) +
M2h

2
N

2
= Ek−1(1 +M1hN ) +

M2h
2
N

2
,

as desired.

Exercise 23: Regularity by the bootstrap

Consider the differential equation

dy

dt
= f(t, y).

where we assume that, given an open interval J = (α, β), the function f(t, y) is
continuous on the rectangle R := J × R = {(t, y) ∈ R2 : t ∈ J and y ∈ R}. Given a
subinterval I = (a, b) ∈ J , assume that y : I → R is a function which is differentiable
for all t ∈ I and satisfies

y′(t) = f(t, y(t))

for all t ∈ I.

1. Show that y′(t) is necessarily a continuous function on the interval I. In this
case we say that y is once continuously differentiable on I and write y ∈ C1(I).
Conclude that y is a bona fide (analytic) solution to the given differential
equation on I.

2. Assume additionally that ∂f/∂t and ∂f/∂y exist and are continuous function
on the rectangle R. Use the chain rule to show that

y′′(t) =
∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))f(t, y(t))

for t ∈ I. Conclude that y is twice differentiable on I and y′′(t) is continuous
on I. In this case, we say that y is twice continuously differentiable on I and
write y ∈ C2(I).

3. Assume now that f has (both pure and mixed) partial derivatives of all orders
which are continuous on R. Conclude that y can be differentiated ad infinitum
(as many times as you wish) and all of its derivatives are continuous on I. In
this case, y is said to be smooth on I and we write y ∈ C∞(I).

As it turns out, the previous lemma helps us to provide a uniform estimate on the errors
Ek. Here, we use the word uniform to mean that the upper bound doesn’t depend on k,
but only on f , T − t0 and N . Such an estimate is extremely useful because it allows us to
tell exactly how large N should be to get the global error, i.e., the maximum of the Ek’s,
within any desired tolerance. For example, if you only need to estimate your solution y(t)
within a desired global tolerance on a given interval, you can figure out, a priori, how
many computations need to be done to obtain this desired error. Provided you’re using
computational software to approximate the solution, this means that you will know ahead
of time how long the computer will need to run to get within this tolerance. We formulate
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the precise result in the following theorem. As is true for the lemma, the hypotheses of
the theorem can be significantly weakened and the result of the theorem still holds; for
this, we refer the reader to [8].

Theorem 2.6.2 (The Error of Euler’s Method). Consider the initial value problem{
dy
dt = f(t, y) y(t0) = y0

where we shall assume that f , ∂f/∂y and ∂f/∂t are bounded and continuous functions
on the whole of R2. Let M1 and M2 be positive constants for which∣∣∣∣∂f∂y (t, y)

∣∣∣∣ ≤M1

∣∣∣∣∂f∂t (t, y) +
(
∂f

∂y
(t, y)

)
f(t, y)

∣∣∣∣ ≤M2

for all (t, y) ∈ R2. Following Euler’s method, let T > t0, N be a natural number and
set hN = (T − t0)/N . Taking t0 and y0 as given by the initial value problem, for each
k = 1, 2, . . . , N , define

tk = t0 + khN ,

and
yk = yk−1 + f(tk−1, ytk−1

)hN .

Then the absolute error Ek = |y(tk)− yk| satisfies

Ek ≤ M2hN
2M1

(
eM1(T−t0) − 1

)
(2.32)

for all k = 0, 1, 2 . . . , N .

Proof. In view of the lemma, we have

Ek ≤ AEk−1 +B

for each k = 1, 2, . . . , N where A = 1 +M1hN > 1 and B = M2h
2
N/2 > 0. For k ≥ 2,

combining the inequalities for k and k − 1, we easily obtain

Ek ≤ A(AEk−2 +B) +B = A2Ek−2 +AB +B.

Continuing in this manner (or by rigorously using mathematical induction), it follows
that

Ek ≤ AkE0 +Ak−1B +Ak−2B + · · ·AB +B

and since E0 = 0,
Ek ≤ B(Ak−1 +Ak−2 + · · ·+A+ 1)

which holds for k ≥ 1. For each such k, note that

(A−1)(Ak−1+Ak−2+· · ·+A+1) = Ak+Ak−1−Ak−1+Ak−2−Ak−2+· · ·+A−A−1) = Ak−1

and because A > 1, we have

Ak − 1

A− 1
= (Ak−1 +Ak−2 + · · ·+A+ 1)

and therefore

Ek ≤ B
Ak − 1

A− 1
=

B

A− 1
(Ak − 1) =

M2h
2
N/2

M1hN
((1 +M1hN )k − 1). (2.33)
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Given that M1hN > 0, observe that

eM1hN =
(M1hN )0

0!
+

(M1hN )1

1!
+

(M1hN )2

2!
+

(M1hN )3

3!
+ · · ·

= 1 +M1hN + “positive stuff”

and therefore
(1 +M1hN )k ≤ (eM1hN )k = eM1khN (2.34)

for each k ≥ 1. Combining (2.33) and (2.34) yields

Ek ≤ M2hN
2M1

(
eM1khN − 1

)
for each k ≥ 1. Finally, upon noting that khN = tk − t0 ≤ T − T0, we obtain

Ek ≤ M2hN
2M1

(
eM1(T−t0) − 1

)
=
M2(T − t0)

2M1N

(
eM1(T−T0) − 1

)
for k = 1, 2, . . . N , as desired.

Note Here

Example 22

Consider the initial value problem{
dy
dt = cos2(y) y(0) = 0.

For this equation, f(t, y) = cos2(y) is continuous on all of R2 and we have

∂f

∂t
(t, y) = 0 and

∂f

∂y
(t, y) = −2 cos(y) sin(y) = − sin(2y),

both of which are continuous on all of R2. It is easy to see that, for all (t, y) ∈ R2,∣∣∣∣∂f∂y (t, y)
∣∣∣∣ = |− sin(y)| ≤ 1 :=M1

and ∣∣∣∣∂f∂t (t, y) +
(
∂f

∂y
(t, y)

)
f(t, y)

∣∣∣∣ = ∣∣− sin(2y) cos2(y)
∣∣ ≤ 1 :=M2.

In using Euler’s method to numerically approximate the solution to this initial value
problem on, say, the interval [0, 2], we see that our situation is ripe for the application
of Theorem 2.6.2 and we can therefore obtain so-called a priori bounds on the global
approximation error E = maxk=1,2,...,N Ek. To this end, let’s fix T = 2 > t0 = 0 and a
natural number N . Running Euler’s method to approximate the solution y = y(t) to
this initial value problem on the interval [0, 2] = [t0, T ] yields approximants defined
iteratively by y0 = 0 and

yk = yk−1 + f(tk−1, yk−1)hN = yk−1 + cos2(yk−1)
2

N

for k = 1, 2, . . . , N where tk = t0 + khN = 2k/N . In view of Theorem 2.6.2, we have

Ek ≤ M2(2− 0)

2M1N

(
eM1(2−0) − 1

)
=

1

N

(
e2 − 1

)
≤ 10− 1

N
=

9

N
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for k = 1, 2, . . . , N . Thus, if we wish to get our global approximation error within
0.1 = 10−1, it is sufficient to choose N = 90. In the figure below, I have plotted the
solutiona y(t) to this initial value problem along with the Euler approximation for
N = 10 and 90.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

The graph of the solution is shown in blue with a gray error band of radius 0.1
surrounding it. The approximants given by Euler’s method are both plotted in red
for N = 10 and N = 90, the latter being almost visually indistinguishable from the
known solution. In studying this example, you should observe that the upper bound

M2(T − t0)

2M1N

(
eM1(T−t0) − 1

)
is a significant over estimation of the error, this is frequently the case.

aThis initial value problem is easily solvable using the technique of separation of variables. The
solution is y(t) = arctan(t).

Exercise 24

To get a handle on the preceding theorem, consider the initial value problem{
dy
dt = y

2(1+y2) y(0) = 1.

Here, f(t, y) = y/(2(1 + y2)) which is evidently continuous on R2.

1. Compute the partial derivatives ∂f/∂t and ∂f/∂y and verify that they are also
continuous on all of R2.

2. In fact, by inspection, you should see that f , ∂f/∂t and ∂f/∂y are also bounded
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on all of R2. Use a method of your choosing to obtain positive constants M1

and M2 for which∣∣∣∣∂f∂y (t, y)
∣∣∣∣ ≤M1 and

∣∣∣∣∂f∂t (t, y) +
(
∂f

∂y
(t, y)

)
f(t, y)

∣∣∣∣ ≤M2

for all (t, y) ∈ R2. Hint: It’s straightforward to show that M1 can be taken to
be 1/2 andM2 to be 1/4. If you can show this, great! If you can do better, i.e.,
get smaller values of M1 and M2, please do it! Note: If you use computational
software, please include your source code.

3. Let’s now run Euler’s method. Set t0 = 0, T = 1 and let N = 3, calculate the
approximants y1, y2 and y3 and put your answers in a table of the form

t0 t1 t2 t3
y0 y1 y2 y3

4. As the differential equation y′ = y/2(1 + y2) is separable, you can obtain a
solution to the given initial value problem; however, the solution will need to
be left in implicit form. Please give this solution in implicit form.

5. Using the implicit solution obtained in the previous part, I used Mathematica
to appromate y(t1), y(t2) and y(t3). Putting the computer precision to 20
decimal places, I obtain:

y(t1) = 1.0832428248405900569

y(t2) = 1.1659882614021548341

y(t3) = 1.2478564015933930436

Assuming these are the actual values (which they aren’t, but good enough for
our purposes), compute the errors E1, E2 and E3.

6. Let’s now check these errors against the theorem. Using your values ofM1 and
M2 and T = 1, t0 = 0 and N = 3, compute the upper bound in (2.32). Verify
that your errors satisfy the inequality (2.32).

7. Finally, using (2.32) and your computed value of the upper bound in the present
situation, find how large N would need to be so that the global approximation
error yielded by Euler’s method satisfies

E = max
k=1,2,...,N

{Ek} ≤ 10−10.
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Chapter 3

Higher Order Ordinary
Differential Equations

In this chapter, we study higher1 order ordinary differential equations and their initial
value problems. Much of our focus, however, will be spent on second-order equations
and this is essentially for two reasons. First, the methods we develop here to solve linear
second-order equations generalizes straightforwardly to nth-order equations for n > 2.
Secondly, the vast majority of differential equations found in nature (and elsewhere) are
second-order equations, e.g., Newton’s Second Law, Bessel’s Equation (which helps to
explain the vibration of the head of a drum), the equation for the Arrow-Pratt measure
of absolute risk aversion (in finance/economics).

3.1 Second-order Equations: Existence and Unique-
ness

We recall, a second-order ordinary differential equations is an equation of the form

y′′ = f(t, y′, y)

where f : D → R where D ⊆ R3. We recall from Section 1.3 that second-order differential
equations are paired with two initial conditions, one involving y and the other involving
y′. Given a time t0 and two numbers y0 and y′0, we consider the corresponding initial
value problem 

y′′ = f(t, y′, y)

y′(t0) = y′0
y(t0) = y0.

(3.1)

A solution for this initial value problem is, by definition, a function y which is twice
continuously differentiable2 on an open interval J containing t0 which satisfies both initial
conditions y(t0) = y0 and y′(t0) = y′0 and has

y′′(t) = f(t, y′(t), y(t))

for all t ∈ J .

1Of order n > 1
2This means that y is twice differentiable on J and its second derivative y′′ is itself continuous on J .
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Since we’re reasonably comfortable now with questions of existence and uniqueness (and
because I want to start writing “the solution” instead of “a solution”), let’s state the
Picard-Lindelöff theorem for second-order equations.

Theorem 3.1.1 (Picard-Lindelöff Theorem for Second-order Equations). Let t0, y
′
0 and

y0 ∈ R and consider the initial value problem (3.1) where f : D → R for D ⊆ R3. If there
is an open region R ⊆ D (perhaps an open prism of the form R = (a, b)× (c, d)× (e, f))
containing the initial point (t0, y

′
0, y0) ∈ R3 on which f = f(t, a, b), ∂f/∂a and ∂f/∂b are

all continuous, then the initial value problem (3.1) has a unique solution y.

In the next chapter, we will see that this theorem is a simple consequence of an analogous
Picard-Lindelöff type theorem for first-order systems of differential equations. Though it
is an interesting study, we shall not here analyze situations in which sufficiently “bad”
functions f yield initial value problems for which the conclusions of this theorem are not
true (as we did for first-order equations).

As was true in one dimension, initial value problems are often solved by producing a
general solution – when it exists – to the differential equation y′′ = f(t, y′, y) and then
subjecting this general solution to initial conditions. Thus, as there are two initial con-
ditions here, we expect general solutions to have two constants of integration, usually
denoted by C1 and C2. As was the case for first-order differential equations, a class of
equations which always have general solutions are linear equations. In some sense, these
are the easiest differential equations to solve and, as we will see, they are framed within
a beautiful theory which is tightly tied to linear algebra. This is the theory to which we
now turn.

3.2 Linear Second-Order Ordinary Differential Equa-
tions: the general theory

In looking back to Definition 1.2.2, a second-order linear differential equation is an equa-
tion of the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = g(t) (3.2)

where a0, a1, a2 and g are real-valued functions defined on an open interval I; the equation
is said to be homogeneous provided g is the zero function. For example, two important
second-order linear homogeneous equations are

(1− t2)y′′ − 2ty′ + α(α− 1)y = 0

and
t2y′′ + ty′ + (t2 − ν2)y = 0

where α and ν are (fixed) natural numbers. The first equation is called Legendre’s
equation3 and appears in the study of gravitation and electrostatics [12]. The second
equation is called Bessel’s equation4 and arises in a number of places, including the study
of the vibration of a drum.

We shall primarily study the situation in which the “coefficient” a2 = 1 or, equiva-
lently, the second-order linear differential equation

y′′ + p(t)y′ + q(t)y = r(t) (3.3)

3Adrien Marie Legendre (1752-1833) was a French mathematician best known for his work on elliptic
integrals and the method of least squares.

4Friedrich Wilhelm Bessel (1784-1846) was a German astronomer and applied mathematician who
first observed stellar parallax and used it to get one of the first accurate measurements of the “size” of
the universe.
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where p, q and r are real-valued functions on I (and can be gotten from (3.2) by multi-
plying though by 1/a2). To investigate the conditions under which solutions to (3.3) are
unique (subject to initial conditions), we rewrite this equation as

y′′ = r(t)− p(t)y′ − q(t)y

so as to employ the machinery of Theorem 3.1.1. Here,

f(t, a, b) = r(t)− p(t)a− q(t)b

and, for f to satisfy the hypotheses of the theorem, we can see easily that we should
require r(t), p(t) and q(t) to be continuous functions (Do you see why?). More precisely,
we have the following theorem.

Theorem 3.2.1. Let I be an open interval and let p, q and r be continuous functions on
I. Then, given any t0 ∈ I and any y0 and y′0 ∈ R, the initial value problem

y′′ + p(t)y′ + q(t)y = r(t)

y(t0) = y0
y′(t0) = y′0

has a unique solution y. Furthermore, this solution is twice continuously differentiable on
the entire interval I.

Proof. We shall use Theorem 3.1.1 to show that a unique solution y exists. The statement
about y being twice continuously differentiable on the entire interval I (and not just a
subinterval J containing t0) makes use of a more refined version of the Picard-Lindelöff
theorem than we have stated; the proof of this fact is omitted (Note Here). Upon writing

f(t, a, b) = r(t)− p(t)a− q(t)b,

we have
∂f

∂a
= −p(t) and

∂f

∂b
= −q(t)

for t ∈ I and a, b ∈ R. We observe that, given any t0 ∈ I and any two real numbers y0
and y′0, the initial point (t0, y0, y

′
0) is contained in the rectangle

R = I × R× R = {(t, a, b) : t ∈ I and −∞ < a, b <∞}

on which f , ∂f/∂a and ∂f/∂b are continuous. The result now follows immediately by an
application of Theorem 3.1.1.

Example 1

Consider the initial value problem
y′′ + y = 0

y(0) = 1
y′(0) = 0.

We observe that the functions q(t) = 1 and p(t) = r(t) = 0 are continuous everywhere
and so the theorem above guarantees the existence and uniqueness of solutions to
this initial value problem (and, in fact, any initial value problem). By guessing
(perhaps), we observe that

y(t) = cos(t),
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is twice continuously differentiable, solves the differential equation and has

y(0) = cos(0) = 1 and y′(0) = − sin(0) = 0.

Thus, in view of the theorem, this is the one and only solution.

Exercise 25: Existence/uniqueness for Legendre’s equation

Fix an integer α and consider Legendre’s equation, that is, the homogeneous second-
order linear equation

(1− t2)y′′ − 2ty′ + α(α− 1)y = 0.

Determine the intervals I on which any initial value problem corresponding to t0 ∈ I
can be solved (and uniquely). Your answer should list three intervals (and have
reasoning to illustrate your claim).

3.3 Homogeneous Equations and General Solutions

In this section, we focus our attention on general linear homogeneous second-order differ-
ential equations of the form

y′′ + p(t)y′ + q(t)y = 0 (3.4)

where p and q are continuous functions on an interval I. The focus of this section is to
understand how and when we can produce any/every solution to (3.4) given that (some-
how) we already know a couple of solutions. For example, let’s return to the differential
equation

y′′ + y = 0

discussed in the last section. As we saw, the function y1(t) = cos(t), in particular, solves
this differential equation. As you can probably easily guess, y2(t) = sin(t) is also a
solution to this differential equation. In this section, we discuss how we can use these two
solutions to produce any other solution and, equivalently, solve any initial value problem.
The following proposition is an important step in this direction; it’s called the principle
of superposition.

Proposition 3.3.1 (The Principle of Superposition). Let y1 and y2 be two solutions to
(3.4). Then, for any constants C1 and C2,

y(t) = C1y1(t) + C2y2(t)

is a solution to (3.4).

Proof. We have

y′(t) = C1y
′
1(t) + C2y

′
2(t) and y′′(t) = C1y

′′
1 (t) + C2y

′′
2 (t)

for all t ∈ I. Consequently,

y′′(t) + p(t)y′(t) + q(t)y(t)

= (C1y
′′
1 (t) + C2y

′′
2 (t)) + p(t)(C1y

′
1(t) + C2y

′
2(t)) + q(t)(C1y1(t) + C2y2(t))

= C1y
′′
1 (t) + C2y

′′
2 (t) + C1p(t)y

′
1(t) + C2p(t)y

′
2(t) + C1q(t)y1(t) + C2q(t)y2(t)

= C1(y
′′
1 (t) + p(t)y′1(t) + q(t)y1(t)) + C2(y

′′
2 (t) + p(t)y′2(t) + q(t)y2(t)) (3.5)
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for t ∈ I. However, since y1 and y2 are solutions to the differential equation (3.4), for all
t ∈ I, we have

y′′1 (t) + p(t)y′1(t) + q(t)y1(t) = 0 and y′′2 (t) + p(t)y′2(t) + q(t)y2(t) = 0 (3.6)

and so, by combining (3.5) and (3.6), we obtain

y′′(t) + p(t)y′(t) + q(t)y(t) = 0

for all t ∈ I and therefore y = C1y1 + C2y2 is a solution to (3.4).

Remark 3.3.2. Proposition 3.3.1 says that the linear combination of two solutions is an-
other solution. This guarantees, in particular, that the zero function is always a solution.
It also guarantees that a constant multiple of any solution is another solution.

Let’s now suppose that we have (however they’ve been found) two solutions y1 and y2
to the homogeneous equation (3.4) on the interval I. As the proposition shows, we
can produce more solutions to (3.4) by simply taking linear combinations of y1 and y2.
In this way, a natural question arises: Can every solution to (3.4) be gotten by a linear
combination of y1 and y2? In discussing this question, the following vocabulary is helpful.

Definition 3.3.3. Let y1(t) and y2(t) be solutions to (3.4) on the interval I. If every
solution to (3.4) is given by

y(t) = C1y1(t) + C2y2(t) (3.7)

by specifying constants C1 and C2, we say that (3.7) is a general solution to (3.4).

As every solution to an initial value problem for the differential equation (3.4) is itself a
solution to (3.4) and, conversely, every solution to (3.4) solves some initial value problem,
we immediately obtain the following characterization of general solutions.

Proposition 3.3.4. Let y1(t) and y2(t) be solutions to the differential equation (3.4) on
the interval I. Then (3.7) is a general solution to (3.4) if and only if, given any t0 ∈ I,
y0, y

′
0 ∈ R, there are constants C1, C2 ∈ R for which (3.7) solves the initial value problem

y′′ + py′ + qy = 0

y′(t0) = y′0
y(t0) = y0

If either of these equivalent conditions is satisfied, we call the pair {y1, y2} a fundamental
generating set of solutions to (3.4).

Example 2

Consider the second-order linear homogeneous differential equation

y′′ − y′ − 2y = 0. (3.8)

One can easily verify that y1(t) = 2e2t and y2(t) = −e2t are solutions to (3.8). We
ask: Is y(t) = C1y1(t) + C2y2(t) a fundamental solution? To answer this question,
let’s consider the associated initial value problem

y′′ − y′ − 2y = 0

y′(0) = 1
y′(0) = −1.

(3.9)
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If y(t) = C1y1(t)+C2y2(t) = C1

(
2e2t

)
+C2

(
−e2t

)
= (2C1−C2)e

2t solves the initial
value problem (3.9), we must have

1 = y(0) = (2C1 − C2)e
0 = 2C1 − C2

and
−1 = y′(0) = 2(2C1 − C2)e

0 = 2(2C1 − C2).

It is easy to see, however, that there is no choice of constants C1 and C2 for
which these equations can hold simultaneously. This can be seen by substitu-
tion or elimination (or whatever linear solution method you use). Consequently,
y(t) = C1(

(
2e2t

)
+C2

(
−e2t

)
is not a general solution to (3.8) and hence {2e2t,−e2t}

is not a fundamental generating set of solutions.
Under further investigation, observe that y(t) = e−t solves (3.8) and, in fact,

solves the initial value problem (3.9). As e−t is sufficiently different in character from
2e2t, we might wonder if the pair 2e2t and e−t form a fundamental generating set
of solution to (3.8). In fact, {2e2t, e−t} is a fundamental generating set of solutions
(and you should think about how you might show this). This fact will be confirmed
in a subsequent example after we develop a little more machinery.

We return to the general picture and suppose that y1(t) and y2(t) are solutions to the
differential equation (3.4). At present, sorting out whether or not y1 and y2 form a
fundamental generating set of solutions seems like an arduous task. Let us instead,
momentarily, focus on a more simple question: Given some fixed t0 ∈ I and y0, y

′
0 ∈ R,

can the initial value problem 
y′′ + py′ + qy = 0

y′(t0) = y′0
y(t0) = y0

(3.10)

be solved by (3.7) upon specifying constants C1 and C2? Here we are asking if (3.7) can
be used to solve an initial value problem corresponding to a prespecified initial time t0.
We are not (yet) asking if this can be done for all t0, a question whose affirmative answer
would characterize (3.7) as a general solution. To this end, we must see if (3.7) can be
used to satisfy the initial conditions at the initial time t0 ∈ I. We want

y(t0) = C1y1(t0) + C2y2(t0) = y0

and
y′(t0) = C1y

′
1(t0) + C2y

′
2(t0) = y′0.

As the numbers y0, y
′
0, y1(t0), y2(t0), y

′
1(t0) and y

′
2(t0) are all known, this is a 2×2 linear

system in the variables C1 and C2. We can write this equivalently as the matrix equation(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)(
C1

C2

)
=

(
C1y1(t0) + C2y2(t0)
C1y

′
1(t0) + C2y

′
2(t0)

)
=

(
y0
y′0

)
.

We recall from linear algebra, that this system is solvable for C1 and C2 provided the
matrix

Wy1,y2(t0) =

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)
is invertible and this happens if and only if the determinant

wy1,y2
(t0) = det(Wy1,y2

(t0)) = y1(t0)y
′
2(t0)− y2(t0)y

′
1(t0) ̸= 0.
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The matrixWy1,y2
(t0) is called theWronskian matrix for the solutions y1 and y2 evaluated

at t0 and wy1,y2(t0) is called the Wronskian determinant evaluated at t0; both objects
are named in honor of Polish mathematician Józef Hoene-Wroński. In the case that the
Wronskian determinant at t0 is non-zero, we have(

C1

C2

)
=

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)−1(
y0
y′0

)
= (Wy1,y2

(t0))
−1

(
y0
y′0

)
and so the inivial value problem (3.10) is solved by putting y = C1y1 + C2y2. We state
this as a theorem.

Theorem 3.3.5. Let y1 and y2 be solutions to (3.4). Given t0 ∈ I, if

wy1,y2
(t0) = y1(t0)y

′
2(t0)− y2(t0)y

′
1(t0) ̸= 0,

or equivalently, if the Wronskian matrix at t0 is invertible, then, for any real numbers y0
and y′0, the initial value problem (3.10) is solved by

y(t) = C1y1(t) + C2y2(t)

where (
C1

C2

)
=

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)−1(
y0
y′0

)
= (Wy1,y2

(t0))
−1

(
y0
y′0

)
.

Example 3

Consider the homogeneous linear second-order differential equation

y′′ + 4y = 0

where p(t) = 0 and q(t) = 4, both continuous on the whole of the real line R. Also,
consider

y1(t) = cos(2t) and y2(t) = sin(2t)

defined for t ∈ R. We observe that

y′′1 (t) + 4y1(t) = (cos(2t))′′ + 4 cos(2t) = −4 cos(2t) + 4 cos(2t) = 0

and
y′′2 (t) + 4y2(t) = (sin(2t))′′ + 4 sin(2t) = −4 sin(2t) + 4 sin(2t) = 0

for all t ∈ R and therefore y1 and y2 are solutions to the second order linear ho-
mogeneous differential equation y′′ + 4y = 0. Let’s now consider the initial value
problem 

y′′ + 4y = 0

y(π/4) = 2
y′(π/4) = −3

where, by comparison to (3.10), t0 = π/4, y0 = 2 and y′0 = −3. Given y1 and y2,
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the Wronskian matrix at t0 = π/4 is

Wy1,y2
(π/4) =

(
y1(π/4) y2(π/4)
y′1(π/4) y′2(π/4)

)
=

(
cos(2 · π/4) sin(2 · π/4)

−2 sin(2 · π/4) 2 cos(2 · π/4)

)
=

(
cos(π/2) sin(π/2)

−2 sin(π/2) 2 cos(π/2)

)
=

(
0 1
−2 0

)
.

Consequently,

wy1,y2
(π/4) = det (Wy1,y2

(π/4)) = det

(
0 1
−2 0

)
= 2 ̸= 0.

Thus, in view of Theorem 3.3.5, the above initial value problem is solved by a linear
combination of y1 and y2. To find the coefficients, we look to the theorem and put(

C1

C2

)
= (Wy1,y2

(π/4))
−1

(
y0
y′0

)
=

(
0 1
−2 0

)−1(
2
−3

)
=

(
0 −1/2
1 0

)(
2
−3

)
=

(
3/2
2

)
where we have used the fact that the inverse of a 2× 2 matrix

A =

(
a b
c d

)
is given by

A−1 =

(
a b
c d

)−1

=
1

det(A)

(
d −b
−c a

)
=

1

ad− bc

(
d −b
−c a

)
provided det(A) = ad− bc ̸= 0. Thus, in view of Theorem 3.3.5,

y(t) = C1y1(t) + C2y2(t) =
3

2
cos(2t) + 2 sin(2t)

defined for t ∈ R solves the initial value problem above. This is easily verified (and
you should always do this type of verification) by first observing that any linear
combination of solutions is also a solution (Proposition 3.3.1) and further

y(π/4) =
3

2
cos(2 · π/4) + 2 sin(2 · π/4) = 0 + 2 = 2

and

y′(π/4) =
3

2
(−2) sin(2 · π/4) + 2(2) cos(2 · π/4) = −3 + 0 = −3

as required. Finally, in view of Theorem 3.2.1, we know that this is the unique
solution to this initial value problem.

Remark 3.3.6. Theorem 3.3.5 shows that, proviced wy1,y2
(t0) ̸= 0, we can solve the initial
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value problem (3.10) using the linear combination

y(t) = C1y1(t) + C2y2(t)

and it specifies exactly that constants C1 and C2 in terms of the inverse of the matrix
Wy1,y2

(t0), which is itself in terms of y1(t0), y2(t0), y
′
1(t0), y

′
2(t0), y0 and y′0. The essential

thing for you to understand about this theorem is this: The condition that wy1,y2
(t0) ̸= 0

is sufficient for y = C1y1 +C2y2 to solve the initial value problem at hand – all you need
to do is specify the constants C1 and C2. Though Theorem 3.3.5 does give you an explicit
method for finding these constants, you can also simply solve the linear system{

C1y1(t0) + C2y2(t0) = y0

C1y
′
1(t0) + C2y

′
2(t0) = y′0

directly for the constants C1 and C2. It is up to you whether you want to solve using
the prescription given in Theorem 3.3.5 (in terms of matrices) or solve the above linear
system directly.

Example 4

Consider the differential equation

y′′ − 2

t2
y = 0

and the corresponding initial value problem
y′′ − 2

t2
y = 0

y(1) = 1

y′(1) = 0.

It is straightforward to see (and you should check it for yourself) that

y1(t) =
1

t
and y2(t) = t2

defined for t > 0 are solutions to the differential equation. As t0 = 1, we have
y1(1) = 1/1 = 1, y′1(1) = −1/12 = −1, y2(1) = 12 = 1 and y′2(1) = 2(1) = 2.
Therefore

wy1,y2
(t0) = wy1,y2

(1) = (1)(2)− (1)(−1) = 3 ̸= 0

and so Theorem 3.3.5 guarantees that the initial value problem is solved by

y(t) =
C1

t
+ C2t

2

for t > 0. Instead of constructing the Wronskian matrix, let’s simply subject this
general solution to the given initial conditions. We have

y(1) =
C1

1
+ C21 = C1 + C2 = 1

and

y′(1) = C1
−1

12
+ C2(2)(1) = −C1 + 2C2 = 0.
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By substitution (or addition), we find 1 = C2 + 2C2 = 3C1 and therefore C2 = 1/3
and C1 = 2/3. Thus our solution is

y(t) =
2

3t
+

1

3
t2

defined for t > 0. You should verify directly that this solves the initial value problem.

Exercise 26

Consider the homogeneous linear second-order differential equation

y′′ − 4y = 0

and notice that the coefficients p = 0, q = −4 are continuous on I = R.

1. Consider y1(t) = e2t and y2(t) = e−2t defined for all real numbers t. Verify
that y1 and y2 are solutions to this differential equation on I = R.

2. Compute theWronskian matrixWy1,y2(t0) andWronskian determinant wy1,y2(t0)
at an arbitrary point t0. Is wy1,y2

(t0) = 0 for any t0?

3. Use the preceding theorem to solve the initial value problem
y′′ − 4y = 0

y(0) = 3
y′(0) = −1.

Let’s take stock of our progress thus far. We started with a second-order linear homoge-
neous differential equation (3.4) and assumed that we (somehow) knew two solutions y1
and y2. Using ideas from linear algebra, we observed that any linear combination of y1
and y2 was also a solution to (3.4). We asked: Given an initial value problem (which in-
volved three fixed parameters t0 ∈ I, y0 and y′0) when could we solve the associated initial
value problem (3.10) by a linear combination of y1 and y2. Throughout this investigation,
we were led to the consideration of a matrix

Wy1,y2
(t) =

(
y1(t) y2(t)
y′1(t) y′2(t)

)
called the Wronskian matrix and its determinant

wy1,y2
(t) = det ((Wy1,y2

(t)) = y1(t)y
′
2(t)− y2(t)y

′
1(t)

called the Wronskian determinant5. We found that if the Wronskian matrix at t0,
Wy1,y2

(t0), was invertible or, equivalently, if wy1,y2
(t0) ̸= 0, then any initial value prob-

lem posed at t0 ∈ I for (3.4) could be solved by a simple linear combination of y1 and y2
where the coefficients were given by a formula involving the inverse of Wy1,y2

(t0) and the
corresponding initial values; this was Theorem 3.3.5.

Our theory thus far has been fruitful and we’ve established a sufficient condition under
which initial value problems at t0 ∈ I can be solved. In looking back to Proposition

5Caution: In many textbooks on ordinary differential equations, the “Wronskian” or “W” refer only
to the determinant. The matrix Wy1,y2 is often left unnamed.
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3.3.4, Example 2 and the discussion which follows it, we’d like to understand how this
theory depends on t0 ∈ I. If we ask that wy1,y2(t) ̸= 0 for all t ∈ I, then Theorem 3.3.5
guarantees that all initial value problems for all initial times can be solved and hence, in
view of Proposition 3.3.4, (3.7) is a general solution to (3.4). As the following theorem
shows, a weaker condition will suffice: If the Wronskian determinant is non-zero at some
(any!) time t, then (3.7) is a general solution.

Theorem 3.3.7. Consider the homogeneous linear second-order ordinary differential
equation (3.4) where we assume p and q are continuous functions on an interval I. Sup-
pose that y1 and y2 solve the differential equation (3.4). If

wy1,y2
(t) = y1(t)y

′
2(t)− y2(t)y

′
1(t) ̸= 0 for some t ∈ I (3.11)

(any t will do!), then (3.7) is a general solution to (3.4). More precisely, if the condition
(3.11) is satisfied (that is for any t whatsoever in I), then the Wronskian matrix Wy1,y2

(t)
is invertible for all t ∈ I and so any initial value problem of the form

y′′ + p(t)y′ + q(t)y = 0

y(t0) = y0
y′(t0) = y′0

(3.12)

where t0 ∈ I and y0, y
′
0 ∈ R can be solved by (3.7) by simply putting(

C1

C2

)
= (Wy1,y2

(t))
−1

(
y0
y′0

)
=

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)−1(
y0
y′0

)
.

We begin the proof of this theorem by first treating the following wonderful little
lemma which is due to Abel.

Lemma 3.3.8. Let y1, y2 be solutions to (3.4). Then the Wronskian determinant wy1,y2

solves the first-order differential equation

w′ + p(t)w = 0

on the interval I.

Proof. As y1 and y2 are twice continuously differentiable on I, we observe that

w1,2(t) := wy1,y2(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t)

is necessarily once continuously differentiable on I. Using the linearity and product rules
for derivatives

w′
1,2(t) =

d

dt
(y1(t)y

′
2(t)− y2(t)y

′
1(t))

=
d

dt
(y1(t)y

′
2(t))−

d

dt
(y2(t)y

′
1(t))

= (y′1(t)y
′
2(t) + y1(t)y

′′
2 (t))− (y′2(t)y

′
1(t) + y2(t)y

′′
1 (t))

= y1(t)y
′′
2 (t)− y2(t)y

′′
1 (t) + y′1(t)y

′
2(t)− y′2(t)y

′
1(t)

= y1(t)y
′′
2 (t)− y2(t)y

′′
1 (t) + 0

= y1(t)y
′′
2 (t)− y2(t)y

′′
1 (t) (3.13)

for t ∈ I. By our assumption that y1 and y2 solve the differential equation (3.4), we can
write

y′′1 (t) = −p(t)y′1(t)− q(t)y1(t) and y′′2 (t) = −p(t)y′2(t)− q(t)y2(t)
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for t ∈ I. Substituting these identities for y′′1 and y′′2 into (3.13) yields

w′
1,2(t) = y1(t)y

′′
2 (t)− y2(t)y

′′
1 (t)

= y1(t) (−p(t)y′2(t)− q(t)y2(t))− y2(t) (−p(t)y′1(t)− q(t)y1(t))

= −p(t)y1(t)y′2(t) + p(t)y2(t)y
′
1(t)− q(t)y1(t)y2(t) + q(t)y2(t)y1(t)

= −p(t)(y1(t)y′2(t)− y2(t)y
′
1(t))− q(t)(y1(t)y2(t)− y2(t)y1(t))

for all t ∈ I. We see easily that the q term above is simply zero but what’s perhaps more
surprising is the the first term is exactly −p(t)w1,2(t)! We have therefore shown that,
provided y1 and y2 satisfy the differential equation (3.4), we have

w′
1,2(t) + p(t)w1,2(t) = 0

for all t ∈ I.

From this lemma, we immediately obtain a corollary. As you’ll see, the proof of the
corollary relies on our theory for first-order differential equations we developed in Chapter
1.

Corollary 3.3.9. Let y1 and y2 be solutions to the differential equation (3.4). Then
Wronskian determinant wy1,y2 = y1y

′
2 − y2y

′
1 is either identically zero or it’s never zero.

In particular, if there is a single t ∈ I for which wy1,y2
(t) ̸= 0, then wy1,y2

(t) ̸= 0 for all
t ∈ I and consequently, the Wronskian matrix Wy1,y2

(t) is invertible for all t ∈ I.

Proof. Given that p is continuous on I, the first-order differential equation

w′ + p(t)w = 0

satisfies the hypotheses of the first-order Picard-Lindelöff theorem (Theorem 2.4.2) on the
rectangle R = I × R. Consequently, no two integral curves for this differential equation
can intersect in view of the results shown in Exercise 17 (2.4).

Observe now that w = 0 is an equilibrium solution to this equation. By the previous
lemma the Wronskian determinant wy1,y2

is also a solution. The inability for integral
curves to cross then gives us the following dichotomy: Either wy1,y2

is the zero (equilib-
rium) solution or wy1,y2

is non-zero and hence can never take the value zero.

Let’s now put all of these pieces together to prove Theorem 3.3.7.

Proof of Theorem 3.3.7. Let y1 and y2 be solutions of (3.4) and suppose that Condition
(3.11) is satisfied, that is, wy1,y2(t) ̸= 0 for some t. Then, in view of Corollary 3.3.9, the
Wronskian matrix Wy1,y2(t0) is invertible for all initial times t0 ∈ I and so, by virtue
of Theorem 3.3.5, any initial value problem of the form (3.12) can be solved by a linear
combination of y1 and y2. In other words, (3.7) is a general solution to (3.4).

Example 5: Examples 2 and 4 revisited

1. Consider (again) the differential equation

y′′ − y′ − 2y = 0

and the solutions y1(t) = 2e2t and y2(t) = e−t. Here, p(t) = −1 and q(t) = −2
are continuous functions on I = R. We have

wy1,y2(t) = y1(t)y
′
2(t)− y2(t)y

′
1(t) =

(
2e2t

) (
−e−t

)
−
(
e−t
) (

4e2t
)
= −6et
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for t ∈ R. We observe that, in particular, at t = 0, wy1,y2
(0) = −6 ̸= 0 and

by virtue of Theorem 3.3.7 we may conclude that {y1, y2} is a fundamental
generating set of solutions. Of course, it is easy to see the conclusion of Corol-
lary 3.3.9 here as wy1,y2

(t) = −6et ̸= 0 for all t ∈ R. Observe further that,
as guaranteed by Lemma 3.3.8, wy1,y2

(t) = −6et solves the first-order linear
differential equation

w′ + p(t)w = w′ − w = 0.

2. Consider the differential equation

y′′ − 2

t2
y = 0

and the solutions y1(t) = 1/t and y2(t) = t2 on the interval I = (0,∞); here,
p(t) = 0 and q(t) = −2/t2 are continuous functions on I = (0,∞). We have

wy1,y2(t) =

(
1

t

)
(2t)− (t2)

(
− 1

t2

)
= 3.

In particular, wy1,y2(1) = 3 ̸= 0 and so Theorem 3.3.7 guarantees that {1/t, t2}
is a fundamental generating set of solutions. The conclusion to Corollary 3.3.9
is easily seen in this example and furthermore w′

y1,y2
(t) = d(3)/dt = 0 and so

wy1,y2
(t) solves

w′ + p(t)w = w′ + 0w = 0

as required by Lemma 3.3.8.

Exercise 27

Consider the linear homogeneous second-order differential equation

y′′ +
1

t
y′ − 4

t2
y = 0.

1. What are the functions p(t) and q(t) in this differential equation? Verify (just
a one-sentence explanation) that p and q are continuous on I = (0,∞).

2. Verify that

y1(t) = t2 and y2(t) =
1

t2

solve this differential equation on I = (0,∞).

3. Compute theWronskian matrixWy1,y2
(t) andWronskian determinant wy1,y2

(t)
for t ∈ I.

4. Confirm the conclusion of Lemma 3.3.8 by showing that wy1,y2
satisfies w′ +

p(t)w = 0 for t ∈ I.

5. Confirm the conclusion of Corollary 3.3.9, i.e., show that wy1,y2
falls on one

side of this dichotomy.

6. Finally, verify that the hypotheses of Theorem 3.3.7 have been met for y1 and
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y2 and use them to solve the initial value problem
y′′ + 1

t y
′ − 4

t2 y = 0

y(1) = 2
y′(1) = −1

on the interval I = (0,∞).

This section developed the theory of linear homogeneous second-order differential equa-
tions under the assumption that two solutions y1 and y2 were known. To this end, we
put down an easily checkable condition under which y = C1y1 +C2y2 was a general solu-
tion; this condition was simply that the Wronskian determinant was non-zero somewhere.
Beyond the result of the previous exercise (which is really nice!), two nagging questions
remain:

1. How do we know two such solutions y1 and y2 (those for which the conclusion of
Theorem 3.3.7 holds) exist?

2. If they exist, how do we find them?

The following theorem gives us a satisfactory answer to the first question; it is unfor-
tunately purely existential. We’ll have to postpone the second question for two more
sections.

Theorem 3.3.10. Consider the linear homogeneous second-order differential equation

y′′ + p(t)y′ + q(t)y = 0

where p and q are continuous functions on an interval I. There exists two solutions y1
and y2 for which the conclusion of Theorem 3.3.7 holds. In other words, there are two
functions y1 and y2 such that

y(t) = C1y1(t) + C2y2(t)

is a general solution to the above differential equation.

Proof. Let t0 ∈ I (any element will do) and consider the initial value problems
y′′ + p(t)y′ + q(t)y = 0

y(t0) = 1
y′(t0) = 0

and 
y′′ + p(t)y′ + q(t)y = 0

y(t0) = 0
y′(t0) = 1

.

In view of Theorem 3.2.1, both of these initial value problems have unique solutions which
we denote by y1 and y2 respectively. Necessarily, y1(t0) = 1, y′1(t0) = 0, y2(t0) = 0 and
y′2(t0) = 0 and since they satisfy distinct initial conditions, these solutions are necessarily
distinct. We observe that at this chosen time t0,

wy1,y2
(t0) = det(Wy1,y2

(t0)) =

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)
=

(
1 0
0 1

)
= 1 ̸= 0.

The result now follows by an appeal to Theorem 3.3.7.
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3.3.1 Abel’s Identity and a useful application

In the proof of Corollary 3.3.9, we used only the uniqueness aspect of the Picard-Lindelöff
theorem to make our conclusion. In that the proof, we readily observed that for two
solutions y1 and y2 of (3.4), the Wronskian determinant satisfies w′ + p(t)w = 0. Since
the equation w′ + p(t)w = 0 is a linear first-order equation, Theorem 2.2.1 says that all
solutions (and so wy1,y2 in particular) are of the form

w(t) = Ce−P (t)

where P (t) is an antiderivative of p(t). In other words, to each pair of solutions y1 and
y2 to (3.4), there is a constant Cy1,y2 ∈ R for which

wy1,y2
(t) = Cy1,y2

e−P (t). (3.14)

This provides us with another way to see that either wy1,y2 is never zero, i.e., when
Cy1,y2

̸= 0, or wy1,y2
is always zero, i.e., when Cy1,y2

= 0. In view of our preceding
results, we see that y1 and y2 form a fundamental generating set of solutions if and only
if Cy1,y2

is non-zero. The identity (3.14) is called Abel’s identity and is due to N. Abel.

Among being interesting in its own right, Abel’s identity gives a way of producing solu-
tions to (3.4). Specifically, if one solution y1 of (3.4) is known, Abel’s identity can be used
to produce another solution y2 for which the pair {y1, y2} forms a fundamental generating
set of solutions. Let’s explore this application.

Suppose that y1 is a known non-zero solution to (3.4) and we seek another solution y = y2
to (3.4). If such a solution y is to be found for which the pair {y1, y} to form a fundamental
generating set of solutions, it is necessary that

y1(t)y
′(t)− y′1(t)y(t) = wy1,y(t) = Cy1,ye

−P (t)

for a non-zero constant Cy1,y. Observe that, in this equation, y′1, y1 and e
−P (t) are known;

the unknowns are the constant Cy1,y and the function y along with its derivative y′. Of
course, this itself gives us a first order linear differential equation for y, provided we can
specify the constant Cy1,y. However, as any constant multiple of the desired solution y is
another solution, we can simply demand that Cy1,y = 1 and seek a solution y for which

y1y
′ − y′1y = e−P (t)

for t ∈ I. Though we made this argument on the basis of necessity, it is not too terribly
hard to show that y being a solution to the above equation is also sufficient for y to be
a solution to (3.4) and have that the pair {y1, y} form a fundamental generating set of
solutions. We state this as a proposition and leave its proof to the interested reader.

Proposition 3.3.11. Let y1 be a non-zero solution to (3.4) and let y solve the first-order
linear differential equation

y1(t)y
′ − y′1(t)y = e−P (t)

for t ∈ I. Then y2 = y also solves (3.4) (and so is twice continuously differentiable on I)
and furthermore the pair {y1, y2} is a fundamental generating set of solutions for (3.4).

We make use of this proposition through the following steps:
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Producing solutions via Abel’s identity

Given a non-zero solution y1 to the second-order linear homogeneous differential
equation

y′′ + p(t)y′ + q(t)y = 0,

to find a second solution y2 for which {y1, y2} is a fundamental generating set
of solutions, do the following:

1. Find an antiderivative P (t) of p.

2. Solve the first order differential equation

y′ − y′1(t)

y1(t)
y =

e−P (t)

y1(t)
(3.15)

for a non-zero solution y. This can be done using Theorem 2.2.1 or by
any method you desire.

3. Set y2 = y and verify that y2 solves the second-order differential equation
and that {y1, y2} is a fundamental generating set of solutions.

Example 6

Consider the differential equation

y′′ +
1

t
y′ − 1

t2
y = 0

on the interval I = (0,∞). It is easy to see (and you might have already guessed)
that y1(t) = t is a solution. Let’s use the method above to produce another solution.

First, we have p(t) = 1
t and and we can choose P (t) = ln(t) as an antiderivative

of P . Second, using the fact that y1(t) = t and therefore y′1(t) = 1, the first-order
differential equation (3.15) given by Abel’s identity is

y′ − 1

t
y =

e− ln(t)

t
=

1

t2
.

To solve this first-order equation, we first obtain the integrating factor µ(t) = 1/t
and multiply through to find

d

dt

(y
t

)
=

1

t
y′ − 1

t2
y =

1

t3
.

Thus
y

t
=

∫
1

t3
dt = − 1

2t2
+ C.

As any such (non-zero) solution will do, we choose C = 0 and multiply by t to obtain

y(t) = − 1

2t
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for t ∈ I. Finally, we set y2(t) = y(t) = −1/2t.
Let’s verify that this, in fact, gave us what we wanted. We have y′2(t) = 1/2t2

and y′′2 (t) = −1/t3 and therefore

y′′2 (t) +
1

t
y′1(t)−

1

t2
y2(t)

= − 1

t3
+

1

t

1

2t2
− 1

t2

(
−1

2t

)
=

(
−1 +

1

2
+

1

2

)
1

t3
= 0

for t ∈ I and so y2 is indeed a solutions. To see that {y1, y2} is a fundamental
generating set, we observe that

wy1,y2(t) = y1(t)y
′
2(t)− y′1(t)y2(t) = t

(
1

2t2

)
− 1

(
−1

2t

)
=

1

t
̸= 0

for t ∈ I. Of course, this result should come at no surprise for, by forcing Abel’s
identity to hold with C = 1, we designed y2 in such a way that

wy1,y2
(t) = e−P (t) = e− ln(t) =

1

t
.

for all t ∈ I.

Exercise 28

Consider the differential equation

y′′ − 4y′ + 4y = 0 (3.16)

and the function y1(t) = e2t.

1. Verify that y1 is a solution to (3.16).

2. By following the procedure outlined above, find a second solution y2 to (3.16).

3. Verify directly that your function y2 is a solution and that {y1, y2} is a funda-
mental generating set of solutions.

Exercise 29

In using Abel’s identity to produce a second solution y = y2 to the differential
equation

y′′ + py′ + qy = 0

given that one solution y1 is known, you obtain the first-order linear differential
equation

y′ − y′1(t)

y1(t)
y =

e−P (t)

y1(t)

which is of the form
y′ + a(t)y = b(t)
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where a(t) = −y′1(t)/y1(t) and b(t) = e−P (t)/y1(t).

1. In noting that an antiderivative of a(t) can be readily found (try u-substitution),
use Theorem 2.2.1 to obtain a formula for y = y2. In this formula, feel free
to choose C = 0. Your answer should contain an indefinite integral and be in
terms of y1 and P .

2. Conclude that y = y2 is a producta of y1 and another function u(t), i.e.,

y(t) = y1(t)u(t)

for t ∈ I. What is the function u(t)?

3. In looking back to the previous exercise, i.e., where y1(t) = e2t and P (t) = −4t,
show that the formula you obtain in Item 1 yields the y2 you found previously.

aThe observation that y2 is obtained by multiplying y1 by another function u is the basis for a
technique called reduction of order found in the literature.

3.4 Homogeneous Equations: A Linear Algebraic Per-
spective

In this section, we study second-order linear homogeneous differential equations through
the lens of linear algebra. As it turns out, our perspective here will help us understand
the theory of the preceding section in a more complete way. To phrase things in these
terms, we first need to think about vector spaces for, as you know, linear algebra is the
study of vector spaces and linear maps between them6. To this end, let’s introduce the
vector spaces relevant to our study of linear differential equations. Given an open interval
I = (a, b), we will denote the set of continuous real-valued functions on I by C0(I). In
other words,

C0(I) = {f : I → R : f is continuous on I}.

For any two elements f, g ∈ C0(I), i.e., continuous functions f and g on I, we can add
them to form another function f + g and defined by

(f + g)(t) = f(t) + g(t) (3.17)

for t ∈ I. Also, given a real number α and a function f ∈ C0(I), we can create another
function α · f defined by

(α · f)(t) = αf(t) (3.18)

for t ∈ I; we shall abbreviate α · f by αf . These two operations on functions are called
addition and scalar multiplication, respectively. Though you might not have seen them
put in this way, these operations are exactly what you’ve been working with all along, i.e.,
this is the normal way you add functions and multiply functions by scalars. Recalling the
rules of limits from introductory calculus, it is evident that, because f, g ∈ C0(I), f + g
and αf are continuous functions on I and are therefore members of C0(I) themselves.
From here it is not difficult to see that, in fact, equipped with these operations of function
addition and scalar multiplication, C0(I) forms a vector space; the zero vector in C0(I)
is simply the zero function, i.e., the function that assigns the number 0 to each t ∈ I. We
state this as a proposition; verifying the vector space axioms7 is left for you.

6This is a good time to brush up on your linear algebra skills if you feel rusty. For this, I encourage
you to see your old linear algebra textbook and the appendix of this text.

7See Appendix C.
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Proposition 3.4.1. Consider the interval8 I = (a, b) and the set

C0(I) = {f : I → R : f is continuous on I}

of continuous functions on I. Equipped with the addition (+) and scalar multiplication
(·) defined by (3.17) and (3.18), respectively, the set C0(I) forms a vector space over R.
It is called the vector space of continuous functions on I.

There is a lot of deep mathematics connected to the space C0(I), which you will study if
you take a course in mathematical analysis. In this section, we will focus our attention
on certain subspaces of C0(I). We define

C1(I) = {f : I → R : f is differentiable and its derivative f ′ is continuous on I}

and

C2(I) = {f : I → R : f is twice differentiable and f ′′ is continuous on I}.

Exercise 30

Show the following:

1. Show that, as sets,
C2(I) ⊆ C1(I) ⊆ C0(I).

2. Show that these are all “proper” containments, i.e., find a function f ∈ C0(I)
which is not a member of C1(I). Also, find a function g ∈ C1(I) which is not
a member of C2(I). Here, you can let I = (−1, 1) or any open interval you
want.

3. For a general I, show that C1(I) is a subspace of C0(I). Show that C2(I) is a
subspace of C0(I). Is C2(I) a subspace of C1(I)?

As it turns out, the spaces C0(I), C1(I) and C2(I) are huge. In contrast to familiar
vector spaces like Rn which is n-dimensional (finite-dimensional), they are infinite
dimensional spaces and so much of our intuition about vector spaces gathered from
our knowledge of Rn breaks down. If this is of interest to you, I encourage you to
do the exercises in Appendix C.

In view of the preceding exercise, we observe that

C1(I) =

{
f ∈ C0(I) : f ′ =

d

dt
f exists on I and f ′ ∈ C0(I)

}
and

C2(I) =

{
f ∈ C1(I) : f ′′ =

d

dt
f ′ exists on I and f ′′ ∈ C0(I)

}
.

Continuing inductively, for each n ≥ 1, we define

Cn(I) =

{
f ∈ Cn−1(I) : f (n) =

d

dt
f (n−1) exits on I and f (n) ∈ C0(I)

}
;

8We shall allow for the possibilities that a = −∞ or b = ∞
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here, the symbol f (k) denotes the kth derivative of f . It is evident that9, for all 0 ≤ n ≤ m,
Cm(I) is a subspace of Cn(I). In particular, for each n ≥ 0, Cn(I) is a vector space; it
is called the space of n-times continuously differentiable functions on I. Another vector
space which will be on interest is the space of smooth functions on I defined by

C∞(I) =
⋂
n≥0

Cn(I)

which is, equivalently, the set of function on I that have derivatives of all orders. Nat-
urally, the functions in C∞(I) are said to be smooth. Many of the functions you know
(and know well) are smooth functions. For example, et, cos(t), sin(t) and all polynomials
are smooth functions. In fact, as you might remember from calculus, any function having
a convergent power series representation on I is smooth. What is perhaps more inter-
esting is that there are smooth functions on I which cannot be represented by power series.

The focus of the remainder of this section is to consider an important type of map between
the vector space C2(I) and C0(I) which is relevant to our study of differential equations.
To this end, let p, q ∈ C0(I) and consider the function L : C2(I) → C0(I) defined by
taking a function y ∈ C2(I) and sending it to a function L[y] ∈ C0(I) by the rule

L[y](t) = y′′(t) + p(t)y′(t) + q(t)y(t)

for t ∈ I. Let’s observe an important property of this map10. Given any functions y1 and
y2 in C2(I), observe that (y1 + y2)

′(t) = y′1(t) + y′2(t) and (y1 + y2)
′′(t) = y′′1 (t) + y′′2 (t)

for t ∈ I by the rules of calculus (the derivative of the sum is the sum of derivatives).
Consequently,

L[y1 + y2](t) = (y1 + y2)
′′(t) + p(t)(y1 + y2)

′(t) + q(t)(y1 + y2)(t)

= y′′1 (t) + y′′2 (t) + p(t)(y′1(t) + y′2(t)) + q(t)(y1(t) + y2(t))

= y′′1 (t) + y′′2 (t) + p(t)y′1(t) + p(t)y′2(t) + q(t)y1(t) + q(t)y2(t)

= y′′1 (t) + p(t)y′1(t) + q(t)y1(t) + y′′2 (t) + p(t)y′2(t) + q(t)y2(t)

= L[y1](t) + L[y2](t)

for all t ∈ I. Thus the map L has the property that L[y1 + y2] = L[y1] + L[y2] for
y1, y2 ∈ C2(I). By a similar argument, it isn’t hard to see that L[αy] = αL[y] for all
α ∈ R and y ∈ C2(I). We can therefore conclude that L : C2(I) → C0(I) is a linear
transformation (also called a linear operator) from the vector space C2(I) into the vector
space C0(I).

We have established that L is a linear map. You might say “okay, so what”? If you recall
from linear algebra, the kernel of each linear map is an important object; it measures the
degree to which the map is injective (one-to-one). From the perspective of linear differ-
ential equations, the kernel of our linear transformation L is of paramount importance.
Recalling that the zero function is the zero vector in C0(I), we have

ker(L) = {y ∈ C2(I) : L[y] is the zero function}
= {y ∈ C2(I) : L[y](t) = y′′(t) + p(t)y′(t) + q(t)y(t) = 0 for all t ∈ I}

From this we see trivially that y ∈ ker(L) if and only if y solves the linear homogeneous
differential equation (3.4). We state all of this together in the following proposition.

9Precisely the same argument you used in the preceding exercise will generalize here.
10Before we do, you should verify yourself that, indeed, L[y] ∈ C0(I) provided y ∈ C2(I).
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Proposition 3.4.2. The map L : C2(I) → C0(I) is a linear operator from the vector
space C2(I) of twice continuously differentiable functions into the vector space of contin-
uous functions on the interval I. The kernel of this operator ker(L) is precisely the set of
solutions to the homogeneous differential equation (3.4).

In view of the proposition above, our goal is to understand ker(L) which characterizes all
solutions of (3.4). From linear algebra, you should recall that the ker(L) is a subspace
of C2(I). Consequently, we have the property that ker(L) is closed under linear combi-
nations. That is, for any y1, y2 ∈ ker(L) and C1, C2 ∈ R, we have C1y1 + C2y2 ∈ ker(L).
Using the previous proposition to translate this into a statement about solutions to (3.4),
we conclude that, for all y1, y2 solving (3.4) and constants C1 and C2,

y(t) = C1y1(t) + C2y2(t)

is a solution to (3.4). Of course, this should be no surprise for it is precisely the principle
of superposition, Proposition 3.3.1!

In view of the paragraph above, we get the sense that this linear algebraic perspective is
useful and that ker(L) is indeed an important object. To this end, let’s ask about things
like linear independence, span, basis and dimension. We first focus our attention on linear
independence. In looking back to our knowledge of linear algebra, we recall that vectors
v1, v2, . . . , vk are said to be linearly independent if the equation

C1v2 + C2v2 + · · ·+ Ckvk = 0

can only hold provided that the constants C1, C2 . . . , Ck are all zero. Consequently, two
functions y1 and y2 in ker(L) ⊆ C2(I) are linearly independent if the only constants C1

and C2 for which
C1y1(t) + C2y2(t) = 0

for all t ∈ I are the constants C1 = C2 = 0. As the following result shows, the question
of linear independence in ker(L) is closely related to the Wronskian determinant – an
object which arose for us in the completely different context of aiming to solve initial
value problems.

Proposition 3.4.3. Let y1, y2 ∈ ker(L). Then y1 and y2 are linearly independent if and
only if

wy1,y2
(t) ̸= 0

for some (and hence all ) t ∈ I.

Proof. Suppose that C1 and C2 are numbers for which

C1y1(t) + C2y2(t) = 0

for all t ∈ I; this means the linear combination of y1 and y2 is equal to the zero function.
As both y1 and y2 are differentiable, the previous equation gives

C1y
′
1(t) + C2y

′
2(t) = 0

for all t ∈ I. In combining these two equations in terms of C1, C2 and y1, y2 and their
derivatives, we obtain the matrix equation.(

y1(t) y2(t)
y′1(t) y′2(t)

)(
C1

C2

)
=

(
0
0

)
.
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Of course, we immediately see the Wronskian matrix rear its head. This is equivalently
the equation

Wy1,y2
(t)

(
C1

C2

)
=

(
0
0

)
.

If, for some t ∈ I, wy1,y2
(t) ̸= 0, then the Wronskian matrix is invertible and hence the

only solution to the equation above is the trivial (zero) solution, i.e., C1 = C2 = 0. We
therefore see that y1 and y2 must be linearly independent.

Conversely, let y1 and y2 be linearly independent members of ker(L). We assume, to
reach a contradiction, that wy1,y2(t0) = 0 for some t0 ∈ I. In this case, the Wronskian
matrix Wy1,y2(t0) is not invertible and hence there is a non-trivial solution (in C1 and
C2) to the system

Wy1,y2
(t0)

(
C1

C1

)
=

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)(
C1

C2

)
=

(
0
0

)
.

Correspondingly, for this fixed pair C1 and C2 (not both zero), y(t) = C1y1(t) + C2y2(t)
solves the initial value problem

L[y] = y′′ + py′ + qy = 0

y(t0) = 0
y′(t0) = 0

.

Of course, this initial value problem is also satisfied by the zero solution (the zero function)
and so, by the uniqueness property guaranteed by Theorem 3.2.1, y(t) must be the zero
function, i.e. y(t) = C1y1(t) + C2y2(t) = 0 for all t ∈ I. But this cannot be true, for
we have assumed that y1 and y2 are linearly independent and so we have obtained a
contradiction. Hence wy1,y2

(t) ̸= 0 for all t ∈ I.

Remark 3.4.4. Upon reading carefully through the preceding proof, you’ll see that validity
of the forward statement (that wy1,y2

(t) ̸= 0 for some t implies that y1 and y2 are linearly
independent) doesn’t actually require that y1, y2 ∈ ker(L). The converse statement must
however make use of this assumption for, in 1889, G. Peano proved that it is possible to
have two linearly independent functions whose Wronskian determinant is always zero [13].

Let’s now turn our focus to basis and dimension. Though the following result is essentially
one we’ve seen before (Theorem 3.3.10), it takes on new life when phrased through our
new linear-algebraic lens. In this context, the theorem shows, in particular, that the
ker(L) is a 2-dimensional subspace of C2(I), which is itself an infinite dimensional vector
space.

Theorem 3.4.5. Let p, q ∈ C0(I) and define L : C2(I) → C0(I) by

L[y] = y′′ + py′ + qy.

Then there exist functions y1, y2 ∈ ker(L) for which {y1, y2} is a basis of ker(L). In other
words, ker(L) is a two-dimensional vector space.

Proof. This proof is essentially that given for Theorem 3.3.10 but it is included here as it
is insightful to see the argument phrased in the language of linear algebra. To this end,
pick any t0 ∈ I and consider the initial value problems

L[y] = y′′ + py′ + qy = 0

y(t0) = 1

y′(t0) = 0

and


L[y] = y′′ + py′ + qy = 0

y(t0) = 0

y′(t0) = 1

.
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In view of Theorem 3.2.1, these initial value problems have solutions y1 and y2, i.e., there
are functions y1, y2 ∈ ker(L) for which y1(t0) = 1, y′1(t0) = 0, y2(t0) = 0 and y2(t0) = 1.
I claim that y1 and y2 form a basis for ker(L). To see this, first observe that

wy1,y2
(t0) = det

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)
= det

(
1 0
0 1

)
= 1 ̸= 0.

In view of the preceding proposition, y1 and y2 are linearly independent. It remains to
show that y1 and y2 span ker(L). To this end, let y ∈ ker(L), i.e., y ∈ C2(I) solves (3.4).
Given that the Wronskian determinant for y1, y2 is non-zero, {y1, y2} is a fundamental
generating set of solutions and therefore

y = C1y1 + C2y2

which shows that y is a linear combination of y1 and y2. Consequently {y1, y2} is indeed
a basis. Since all bases (provided they exist) have the same number of elements, we
conclude that ker(L) is a two-dimensional vector space.

In studying the theorem above and thinking carefully, we see that two functions y1 and
y2 form a basis for the ker(L) if and only if they form a fundamental generating set
of solutions to (3.4). Thus the notions (of bases and fundamental generating sets) are
equivalent. In this language, let us end this section by stating a theorem which aggregates
all of this information.

Theorem 3.4.6. Given any two elements y1, y2 ∈ ker(L), the following are equivalent.

1. y1 and y2 form a fundamental generating set of solutions to (3.4).

2. y1 and y2 form a basis for ker(L).

3. y1 and y2 are linearly independent.

4. wy1,y2
(t) ̸= 0 for some t ∈ I.

5. wy1,y2(t) ̸= 0 for all t ∈ I.

To check your understanding, I encourage you to check all of the implications of the
theorem and point to the relevant results coming from the previous section. It is straight-
forward to argue that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (1).

Exercise 31

Consider D2 : C2(I) → C0(I) defined for y ∈ C2(I) by

D2[y](t) = y′′(t).

As D2 is of the form D2[y] = y′′ + py′ + qy where p = q = 0, D2 is indeed a second
order differential operator. Let’s denote by P1(I) the vector space of first degree
polynomial function on the interval I, i.e.,

P1(I) = {f : I → R : f(t) = a0 + a1t for t ∈ I where a0, a1 ∈ R}.

1. Show that any f ∈ P1(I) satisfies D
2[f ] = 0. In other words, show that

P1(I) ⊆ ker(D2).

2. Using the fact that f ′(t) = 0 on I if and only if f is a constant function, show
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that
ker(D2) ⊆ P1(I).

In this way, your have shown that

ker(D2) = P1(I)

or, equivalently, every solution to the second order differential equation y′′ = 0 is of
the form y(t) = a1t+ a0.

3.5 Producing Solutions

In the preceding sections, we developed a general theory of second-order linear homoge-
neous ordinary differential equations. Almost all of the results in this theory started with
the assumption that, somehow, two solutions y1 and y2 to the equation

y′′ + py′ + qy = 0

were known. Using Abel’s identity, we were able to further to reduce our efforts by being
able to obtain a second linearly independent solution y2 given that we knew a single non-
zero solution y1 – this however still involved considerable effort. The question remains:
How can we produce linearly independent solutions y1 and y2 or, at least, a non-zero
solution y1? Though there is a fairly general theory for producing such solutions, it is
fairly complicated and involves the matrix exponential. In this section, we shall restrict
our attention to two special classes of linear second order differential equations for which
finding solutions y1 and y2 is easy.
Note Here

3.5.1 Second-order equations with constant coefficients

Consider a second-order linear homogeneous equation of the form

L[y] = y′′ + by′ + cy = 0 (3.19)

where b, c ∈ R. Such an equation is said to have constant coefficients, i.e., where p(t) = b
and q(t) = c are simply constant functions on I = R. To produce solutions to this
equation, we put forth the following idea: As a solution y to (3.19) must have the property
that a (constant) linear combination of y′′, y′ and y must sum to zero, we expect that
the derivatives of the function y must themselves look like y, i.e., be constant multiples of
themselves. As the exponential function is the canonical function having this property, it
is reasonable to expect a solution to (3.19) to be of the form y(t) = ert for some constant
r. Taking this as an educated guess, often called an ansatz, we substitute y(t) = ert into
(3.19) to find

0 = y′′(t) + by′(t) + cy(t) = r2ert + brert + cert = (r2 + br + c)ert

For this identity hold for all t ∈ R, it is necessary and sufficient that the number r is such
that

r2 + br + c = 0. (3.20)

This quadratic equation (3.20) is called the characteristic equation for the differential
equation 3.19. Let’s work through an example.
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Example 7

Consider the constant-coefficient equation

y′′ − y′ − 6y = 0.

In view of the observations above, or by making the ansatz that a solution is of the
form ert, we obtain the corresponding characteristic equation

r2 − r − 6 = 0.

Thinking back to your training in introductory algebra, we can solve this polynomial
equation by factoring, which is easy in this case, or by using the quadratic formula.
By the first method, we have

(r − 3)(r + 2) = r2 − r − 6 = 0

thus obtaining two distinct solutions r = 3 and r = −2. This is excellent for, in view
of our arguments preceding this example, this gives us candidates for two solutions,
y1(t) = e3t and y2(t) = e−2t. Let’s verify that y1(t) is indeed a solution. We have
y′1(t) = 3e3t and y′′1 (t) = 9e3t and so

y′′1 (t)− y′1(t)− 6y1(t) = 9e3t − 3e3t − 6e3t = 0e3t = 0

for all t ∈ R and hence y1 solves the equation. You should verify for yourself that
y2(t) = e−2t also works. Observe that

wy1,y2
(t) = det

(
e3t e−2t

3e3t −2e−2t

)
= −2e3te−2t − 3e3te−2t = −5et ̸= 0

and therefore y1 and y2 form a fundamental generating set of solutions to the given
equation.

In generalizing the example above, we have the following proposition.

Proposition 3.5.1. If the characteristic equation (3.20) has distinct real roots r1 and
r2, then y1(t) = er1t and y2(t) = er2t form a fundamental generating set of solutions to
(3.19).

Proof. In view of our previous arguments, it is evident that y1(t) = er1t and y2(t) = er2t

solve the differential equation 3.19. It remains to show that they are linearly independent.
To see this, we observe that

wy1,y2
(t) = det

(
er1t er2t

r1e
r1t r2e

r2t

)
= r2e

r1ter2t − r1e
r1ter2t = (r2 − r1)e

(r1+r2)t

for all t and this non-zero in view of our assumption that r1 and r2 are distinct.

As you likely remember from your introductory algebra courses, there are other possibili-
ties for solving polynomial equations beyond the case of distinct real roots. In fact, there
are three possibilities for solutions to the (quadratic) characteristic equation (3.20) given
b, c ∈ R:

i. It has distinct real roots r1 and r2.
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ii. It has a single real root r of multiplicity 2.

iii. It has complex roots which are complex conjugates.

This trichotomy can be seen as a result of the quadratic formula

r =
−b±

√
b2 − 4c

2
,

applied to the (3.20). If b2 − 4c > 0, (3.20) has the distinct real roots

r1 =
−b+

√
b2 − 4c

2
and r2 =

−b−
√
b2 − 4c

2

and, in this case, Proposition 3.5.1 applies. In the case that b2 − 4c = 0, (3.20) has a
single root r = −b/2 of multiplicity two and the corresponding polynomial is easily seen
to be a perfect square, i.e.,

r2 + br + c = (r − a)2 = 0

where a = −b/2. Correspondingly, the differential equations takes the form

L[y] = y′′ − 2ay′ + a2y = 0. (3.21)

Given that r = a solves the characteristic equation, we observe that y1(t) = eat is a
solution to (3.21). In contrast to the case with distinct real roots, the trouble here is
to find a second linearly independent solution. Such a solution can be produced using
Abel’s identity and you should pursue this if you’re curious. A second linearly independent
solution can also be found using linear algebra, as the following two exercises show.

Exercise 32: Similarity Transformation

Let V be a vector space and let L and M be linear operators from V to V , i.e.
mapping V into itself. Assume that M is invertible (an isomorphism) with inverse
M−1 and set S =M−1 ◦L ◦M and note that M ◦ S = L ◦M (and so they say that
L and S are similar).

1. Given v ∈ ker(S), show that Mv ∈ ker(L).

2. If {v1, v2, . . . , vd} is a basis for ker(S), show that {M(v1),M(v2), . . . ,M(vd)} is
a basis for ker(L). Hint: We’ve already discussed how isomorphisms preserve
linear independence, so necessarily {M(v1),M(v2), . . . ,M(vd)} is a linearly
independent set. Your job is to show that this collection spans ker(L).

Exercise 33

In this exercise we seek a linearly independent pair of solutions to the differential
equation

L[y] = y′′ − 2ay′ + a2y = 0.

Equivalently, we seek a basis for ker(L). To achieve our goal, we take motivation for
the previous exercise and define a linear operator Ma defined by

Ma[f ](t) = eatf(t)

where f is a function (which can be taken in C2(I) or C0(I)).
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1. Show that the inverse of Ma (as an operator from C2(I) onto C2(I)) is given
by

(Ma)
−1[f ](t) = e−atf(t) =M−a[f ](t)

2. For any y ∈ C2(I), show that

((Ma)
−1 ◦ L ◦Ma)[y] = D2[y] (3.22)

where D2 is the operator defined by D2[y] = y′′ for y ∈ C2(I). In this way
you show that L and D2 are similar in the sense of the previous exercise.

3. As we saw in Exercise 31, ker(D2) = P1(I) and so a basis for the ker(D2) is
{1, t} (the constant function and the identity function). Use this fact and the
result of the previous exercise to find a basis for ker(L).

4. Verify directly that the functions you obtained, y1(t) and y2(t), satisfy the
differential equation L[y] = 0.

5. Using the Wronskian determinant, verify that these solutions are linearly in-
dependent.

Example 8

Consider the constant-coefficient second-order linear homogeneous differential equa-
tion

y′′ − 2y′ + y = 0.

Its associated characteristic equation is

r2 − 2r + 1 = (r − 1)2 = 0

and so we obtain r = 1 as a solution of multiplicity 2. Immediately, we have
y1(t) = et as a solution and, in view of the previous exercise, we expect y2(t) = tet

to also be a solution. Let’s verify this. We have

y′′2 (t)− 2y′2(t) + y2(t) = (tet)′′ − 2(tet)′ + (tet)

= (et + tet)′ − 2(et + tet) + tet

= (et + et + tet)− 2et − 2tet + tet

= 2et − 2et + tet − 2tet − tet

= 0

which holds for all t ∈ R. Hence, y2(t) = tet satisfies the differential equation.
Observe now that

wy1,y2
(t) = y′1(t)y2(t)− y1(t)y

′
2(t) = et(tet)− et(et + tet) = −e2t ̸= 0

for all t ∈ R and therefore {y1, y2} form a fundamental generating set of solutions
to the given differential equation.
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In the final case that b2 − 4c < 0, (3.20) has complex roots

r =
−b±

√
b2 − 4c

2
= − b

2
±
√
(4c− b2)(−1)

2
= − b

2
±

√
4c− b2

√
−1

2

=

(
− b
2

)
±

(√
4c− b2

2

)
i

where i =
√
−1 is the imaginary unit. We write this as

r = α± βi

where α = −b/2 and β =
√
4c− b2/2. In following our standard prescription for produc-

ing solutions, we consider the functions,

y1(t) = e(α+iβ)t = eαt+iβt and y2(t) = e(α−iβ)t = eαt−iβt.

defined11 for t ∈ R. These complex-valued functions are, in fact, solutions to (3.19) as
you will show directly in Exercise 35. To this end, it will be necessary to have a notion of
the “derivative” of a complex-valued function of a real variable t which you will develop
in that exercise. For now, however, we shall not worry about the complex nature of things
and manipulate these functions as if they were the real-valued function with which we
are familiar. As a consequence of Euler’s identity12, i.e., that

eiθ = cos(θ) + i sin(θ) (3.23)

for all θ, we have

y1(t) = e(α+iβ)t = eαteiβt = eαt(cos(βt) + i sin(βt))

= eαt cos(βt) + ieαt sin(βt) (3.24)

and

y2(t) = e(α−iβ)t = eαte−iβt = eαt(cos(−βt) + i sin(−βt))
= eαt(cos(βt)− i sin(βt))

= eαt cos(βt)− ieαt sin(βt)

for t ∈ R. Upon recalling that ker(L) is a vector space and, as we’re taking for granted
that y1, y2 ∈ ker(L),

ỹ1(t) =
1

2
(y1(t) + y2(t)) =

1

2

(
2eαt cos(βt)

)
= eαt cos(βt) ∈ ker(L),

i.e., ỹ1(t) = eαt cos(βt) is a solution to (3.19). By a similar argument13, we have

ỹ2(t) =
1

2i
(y1(t)− y2(t)) = eαt sin(βt) ∈ ker(L),

i.e., ỹ2(t) = eαt sin(βt) is a solution to (3.19). For simplicity, let’s rename these solutions
as y1 and y2, that is, we set

y1(t) = eαt cos(βt) and y2(t) = eαt sin(βt) (3.25)

11The complex exponential function z 7→ ez is defined via power series and behaves just as you expect.
For example, for any complex numbers z and w, ez+w = ezew.

12If you haven’t seen Euler’s identity before, it is easily derived by simplifying the Maclaurin series
for eiθ. Further, evaluating the identity at θ = π yields what some call the most beautiful equation in
mathematics, eiπ + 1 = 0.

13Here we are actually using the fact that ker(L) is a vector space over C and so we can scale by 1/2i
without trouble
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for t ∈ R. As these solutions are real-valued, you’ll likely find them more tractable to
work with than the complex-valued functions from which they were derived14. For the
solutions y1 and y2 to (3.19), observe that

wy1,y2
(t) = det

(
eαt cos(βt) eαt sin(βt)

αeαt cos(βt)− βeαt sin(βt) αeαt sin(βt) + βeαt cos(βt)

)
= e2αt

(
α cos(βt) sin(βt) + β cos2(βt)− α cos(βt) sin(βt) + β sin2(βt)

)
= βe2αt(cos2(βt) + sin2(βt)

= βe2αt

for all t ∈ R. This, of course, never vanishes because β =
√
4c− b2/2 ̸= 0 and we therefore

conclude that y1(t) = eαt cos(βt) and y2(t) = eαt sin(βt) form a fundamental generating
set of solutions to (3.19). We summarize our conclusions as follows.

Proposition 3.5.2. Consider the second-order constant coefficient linear homogeneous
differential equation (3.19) and its characteristic equation (3.20). If b2 − 4c < 0, (3.20)
has complex-roots α ± iβ where α = −b/2 and β =

√
4c− b2/2. In this case, {y1, y2},

defined by (3.25), is a fundamental generating set of solutions to (3.19).

Remark 3.5.3. The above argument took for granted that all formal computations in-
volving complex-valued functions worked just as they do for real-valued functions. In not
taking these computations for granted, to truly prove the above theorem, one needs to
verify directly that y1 and y2, defined by (3.25) are solutions to (3.19) provided b2−4c < 0.

Exercise 34

Carry out the instructions in the remark above. That is, directly verify that y1 and
y2, defined by (3.25) are solutions to (3.19) provided b2 − 4c < 0.

Exercise 35: Complex differentiation

As stated above, we can actually work directly with the complex exponential function
and verify that e(α+iβ)t and e(α−iβ)t form a perfectly good fundamental generating
set of solutions to (3.19) provided b2−4c < 0. Before we do this, we must understand
what it means to differentiate a complex-valued function of a real variable. To this
end, let f : R → R and g : R → R and define u : R → C by

u(t) = f(t) + ig(t)

for t ∈ R. We say that u is differentiable at t if f and g are differentiable at t and,
in this case, the derivative of u at t is

u′(t) = f ′(t) + ig′(t).

As with real-valued functions, differentiation of complex-valued functions is linear.
For instance, given a complex number r = α+ iβ where α, β ∈ R,

d

dt
(ru(t)) = ru′(t). (3.26)

14It is my hope that, after doing Exercise 35, you will be just as comfortable working with the complex
exponentials, which I personally find easier.
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In this exercise, we study some properties of the complex exponential function
and its derivatives.

1. Though it seems obvious, verify (3.26). Note that ru(t) = (α + iβ)(f(t) +
ig(t)) = αf(t)−βg(t)+ i(βf(t)+αg(t)) and ru′(t) = (α+ iβ)(f ′(t)+ ig′(t)) =
αf ′(t)− βg′(t) + i(βf ′(t) + αg′(t))

2. Using (3.24) and the above definition of differentiability of a complex-valued
function, show that

d

dt
et(α+iβ) = (α+ iβ)et(α+iβ)

and
d2

dt2
et(α+iβ) = (α+ iβ)2et(α+iβ)

Hint: Confirm the first equality directly. To confirm the second, apply the first
equality and (3.26).

3. Using your result above, applied to α + iβ = 0 + iδ for a real number δ ̸= 0,
verify that y1(t) = eiδt satisfies the differential equation

L[y] = y′′ + δ2y = 0.

Verify that y2(t) = e−iδt also solves the above equation. Using the Wronskian,
verify that y1 and y2 are linearly independent and hence form a fundamental
generating set of solutions. Note: The Wronskian test is applied in the same
way to complex-valued solutions as it is for real-valued ones.

4. At this point, I suspect that you might be worried about the complex-valued
nature of things. You might ask: If the solution set I found above consists
of complex-valued functions, how can I solve initial value problems with real-
valued initial conditions given that my generating set of solutions is complex-
valued? To address this, let’s consider the initial value problem{

L[y] = y′′ + δ2y = 0 y(0) = y0 and y′(0) = y′0

where y0 and y′0 are real numbers. As our theory states, the general solution
to the above initial value problem is

y(t) = C1y1(t) + C2y2(t) = C1e
iδt + C2e

−iδt.

Using this general solution, solve the initial value problem directly. You will
need to write the constants C1 and C2 in terms of y0 and y

′
0. Using the formulas

for cosine and sine found in the previous exercises, simplify your result as much
as possible and confirm that it is in fact real-valued.

In this section, we considered a method for producing solution to the second-order
constant-coefficient linear homogeneous equation (3.19). In the course of this, we were
asked to solve an auxiliary polynomial equation (3.20) called the characteristic equation.
We found that the characteristic equation had three types of solutions, all found us-
ing the quadratic formula, and these solutions led us to three possibilities for to (3.19).
We treated each case separately and wrote down the relevant result for that case; these
were Proposition (3.5.1), Exercise 33 and Proposition (3.5.2). For your convenience, we
aggregate all of our results into the following theorem.

Theorem 3.5.4. Let b, c ∈ R and consider the constant-coefficient linear differential
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equation
L[y] = y′′ + by′ + cy = 0 (3.27)

and its corresponding polynomial equation

r2 + br + c = 0. (3.28)

1. If b2 > 4c, set

r1 = − b
2
+

√
b2 − 4c

2
and r2 = − b

2
−

√
b2 − 4c

2
;

these are distinct real solutions to (3.28). Then y1(t) = er1t and y2(t) = er2t form
a fundamental generating set of solutions to (3.27).

2. If b2 = 4c, set r = −b/2 (the unique solution to (3.28), a root of multiplicity 2).
Then y1(t) = ert and y2(t) = tert form a fundamental generating set of solutions to
(3.27).

3. If b2 < 4c, set

α = − b
2

and β =

√
4c− b2

2
.

Then r1 = α + iβ and r2 = α − iβ are distinct complex solutions to (3.28) and
er1t and er2t form a fundamental generating set of solutions to (3.27). Equivalently
y1(t) = eαt cos(βt) and y2(t) = eαt sin(βt) form a fundamental generating set of
solutions to (3.27).

Exercise 36

For the three initial value problems below, use Theorem 3.5.4 to find a fundamental
generating set of solutions {y1, y2} to the differential equation, use the Wronskian
determinant to verify that the solutions are linearly independent, and find constants
C1 and C2 for which y(t) = C1y1(t) + C2y2(t) solve the initial value problem.

1. {
y′′ − y′ − 12y = 0, y(0) = 7, y′(0) = 0

2. {
y′′ + 6y′ + 9y = 0, y(0) = 1, y′(0) = −2

3. {
y′′ − 2y′ + 2y = 0, y(0) = 1, y′(0) = 1

3.5.2 Power Series Solutions

In the previous subsection, we took the task of finding fundamental generating sets of
solutions to the second-order constant-coefficient linear homogeneous equation 3.19. As
you expect, the coefficients being constant made the problem extremely tractable and
we were able to establish a general theory for such cases, culminating in Theorem 3.5.4.
Moving beyond the constant-coefficient realm, we here study another useful method for
producing solutions. We shall generally consider second-order equations in the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = 0 (3.29)
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with corresponding initial value problem
a2(t)y

′′ + a1(t)y
′ + a0(t)y = 0

y(t0) = y0

y′(t0) = y′0.

where a0, a1 and a2 are continuous real-valued functions defined on an interval I and
t0 ∈ I. In fact, we shall assume much more than continuity for the functions a0, a1 and
a2: We shall assume that these functions are real-analytic on the interval I. This means
that, for each t0 ∈ I, the functions a0, a1 and a2 have convergent power series represen-
tations centered at t0 with positive radii of convergence.

To make things relatively simple, we shall only treat the cases in which a0, a1 and a2 are
polynomials and are centered at t0 = 0, i.e., we shall assume that these functions are all
of the form

b0 + b1t+ b2t
2 + · · · bntn

for given constants b0, b1, . . . , bn. Having the coefficients centered at t0 = 0 will make our
computations relatively simple; it also makes our approach well-suited to solving initial
value problems corresponding to initial time t0 = 0. In view of these assumptions, to solve
(3.29), we assume that solutions are themselves representable via power series centered
at t0 = 0. In other words, we seek solutions of the form

y(t) =

∞∑
n=0

cnt
n

where the coefficients {cn} are to be determined. Provided that this series has positive
radius of convergence R, it is infinitely differentiable at t0 = 0 and we have

y′(t) =

∞∑
n=1

cnnt
n−1

and

y′′(t) =

∞∑
n=2

cnn(n− 1)tn−2,

both of which have radius of convergence R. To determine the coefficients {cn} we can
now substitute the power series for y, y′ and y′′ into the differential equation (3.29) and
combine like terms. This, generally, will yield a recurrence relation for {cn}, called an
indicial equation. From it, we are able to determine the values of {cn} given that c0 and
c1 are specified. The best way to see this is to start with an example.

Example 9

Consider the equation
y′′ + 4y = 0.

Of course, we already know how to find a general solution to this equation using
Theorem 3.5.4 (and you should do this before reading further). Let’s however proceed
by the method described above and seek solutions of the form

y(t) =

∞∑
n=0

cnt
n.
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As we argued above, we have

y′′(t) =

∞∑
n=2

cnn(n− 1)tn−2.

Consequently, for y to solve the given differential equation, we must have

0 = y′′(t) + 4y(t) =

∞∑
n=2

cnn(n− 1)tn−2 + 4

∞∑
n=0

cnt
n. (3.30)

To combine like terms (like monomials), it is helpful to reindex the terms of both
series so that they are written in terms of tk. For the series for y′′, we want tn−2 = tk

and we therefore set k = n−2 to reindex this series. With this choice, the summation
must start at k = 0 and each n gets replaced by k + 2 and thereforea

∞∑
n=2

cnn(n− 1)tn−2 =

∞∑
k=0

ck+2(k + 2)(k + 1)tk.

For the series for y(t), we simply set k = n and write

4

∞∑
n=0

cnt
n = 4

∞∑
k=0

ckt
k =

∞∑
k=0

4ckt
k.

Upon inserting these results into (3.30) and combining the result into a single power
series, we obtain

0 =

∞∑
k=0

ck+2(k + 2)(k + 1)tk +

∞∑
k=0

4ckt
k =

∞∑
k=0

(ck+2(k + 2)(k + 1) + 4ck)t
k.

For this resultant series

∞∑
k=0

(ck+2(k + 2)(k + 1) + 4ck)t
k

to be identically zero, all of its coefficients must be zero. We therefore have

ck+2(k + 2)(k + 1) + 4ck = 0

for all k = 0, 1, 2, . . . . This is the indicial equation; it shows, in particular, that each
term (ck+2) is determined by its penultimate term. We rewrite this as

ck+2 = − 4

(k + 2)(k + 1)
ck

for k ≥ 0 or, equivalently,

cn = − 4

n(n− 1)
cn−2 (3.31)

for n ≥ 2. As discussed above, we observe that all of the coefficients for the series
for y are determined as as soon as the first two, c0 and c1 are specified. This
amounts to specifying two initial conditions for y (and y′). To make things easy,
let’s make the choice c0 = 1 and c1 = 0. From (3.31), we immediately see that
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0 = c1 = c3 = c5 = · · · , i.e., ck = 0 for all odd indicies k. The terms with even
indices are non-zero. We have

c2 = − 4

2 · 1
· 1, c4 = − 4

4 · 3
c2 = − 4

4 · 3

(
− 4

2 · 1

)
=

(−1)242

4 · 3 · 2 · 1
,

c6 = − 4

6 · 5

(
(−1)242

4 · 3 · 2 · 1

)
=

(−1)343

6!

and continuing the pattern, we see that

cn =
(−1)n/2(4)n/2

n!
=

(−1)n/2

n!
2n (3.32)

for all even natural numbers n. Thus, our solution is

y(t) =

∞∑
n=0,2,4,6,...

(−1)n/2

n!
2ntn =

∞∑
n=0,2,4,6,...

(−1)n/2

n!
(2t)n

= 1− (2t)2

2!
+

(2t)4

4!
− (2t)6

6!
+

(2t)8

8!
− (2t)10

10!
+ · · · .

In thinking back to your training to power series, I hope you recognize that this
solution is precisely the function y(t) = cos(2t). If we had, instead, selected c0 = 0
and c1 = 1, we would have produced by an analogous argument the solution y(t) =
sin(2t). Consequently this method of solution via power series has produced two
solutions to the given differential equation:

y1(t) = cos(2t) and y2(t) = sin(2t)

which you can easily verify to be linearly independent.

aYou should think carefully about why this works. To see things clearly, it is often helpful to
write out the first few terms of the series to make sure your reindexing worked correctly.

You can think of the procedure outlined in the preceding example as a prescription. We
can state it in the following way:
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Power Series Solutions

Given real analytic functions a2(t), a1(t), and a0(t) (which can simply be poly-
nomials) with convergent Maclaurin series expansions, we consider the second
order linear homogeneous equation

a2(t)y
′′ + a1(t)y

′ + a0(t)y = 0

defined on a symmetric interval I = (−R,R) of t0 = 0 on which the Maclaurin
series expansions for a2(t), a1(t), and a0(t) are absolutely convergent. To
produce linearly independent solutions, we assume first that a solution y(t)
can be expressed as a convergent Maclaurin series of the form

y(t) =

∞∑
n=0

cnt
n

which is convergent on some interval about t0 = 0. We then do the following:

1. Compute y′(t) and y′′(t).

2. Plug both into the differential equation and using the rules of power series
manipulation, simplify each term to produce an equation asserting that
the sum of (at most three) power series is zero.

3. By reindexing, express all power series in the form

∞∑
n

(Coefficients)tn.

4. By removing a finite number of lower order monomial terms, you should
be able to write your result as

d0 + d1t+ · · ·+ dn0−1t
n0−1 +

∞∑
n=n0

(Coefficients)tn = 0

5. Using linear independence, you can conclude that the polynomial coef-
ficients are zero and that the coefficients (labeled “Coefficients”) of the
remaining series, which will depend on integers and the coefficients of y,
p and q, must also be zero. This will lead to an “indicial equation” from
which you can relate each coefficient cn to c1, c2, . . . , cn−1.

6. Finally, you will have freedom to choose some coefficients of y(t). Your
choices will lead, though the indicial equation, to the unique determi-
nation of the corresponding power series. Your freedom of choice for
these remained coefficients can be varied to obtain linearly independent
solutions.

The essential ingredient in the prescription above is the assumption that, when the co-
efficients a2(t), a1(t), and a0(t) are real analytic (have convergent Taylor expansions), a
solution y(t) will a also be real analytic (and hence you can assume it is given by a power
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series). This highly non-trivial assumption is a consequence of a deep theorem in differen-
tial equations. The theorem is due to Augustin-Louis Cauchy and Sofya Kovalevskaya and
is eponymously called the Cauchy-Kovalevskaya Theorem [5]. Though Cauchy initially
proved a special case of the theorem, Kovalevskaya was the mathematician who obtain
the full result in 1875 which is stated in the context of partial differential equations.

Example 10: Airy’s Equation

For a non-zero real number k, consider the second order linear homogeneous ordinary
differential equation

y′′ + kty = 0 (3.33)

on I = R. This differential equation is called Airy’s equation and is named after the
mathematician and astronomer, George Biddell Airy. We see that the coefficients,
a2(t) = 1, a1(t) = 0 and a0(t) = kt are both real analytic and so, in view of the
preceding prescription, we assume that

y(t) =

∞∑
n=0

cnt
n

is a solution to (3.33) where the coefficients {cn} are to be determined. We compute

y′(t) =

∞∑
n=1

cnnt
n−1 and y′′(t) =

∞∑
n=2

cnn(n− 1)tn−2.

By plugging this expression for y′′(t) and y(t) in (3.33), we obtain

0 = y′′(t) + kty(t)

=

∞∑
n=2

cnn(n− 1)tn−2 + kt

∞∑
n=0

cnt
n

=

∞∑
n=2

cnn(n− 1)tn−2 +

∞∑
n=0

cnkt
n+1.

Taking cues from Step 3 of the prescription outlined above, we reindex the first series
by sending n→ n+ 2 so that

∞∑
n=2

cnn(n− 1)tn−2 =

∞∑
n=0

cn+2(n+ 2)(n+ 1)tn.

To reindex the second series, we send n→ n− 1 so that

∞∑
n=0

cnkt
n+1 =

∞∑
n=1

cn−1kt
n.

Consequently, the above identity is

0 =

∞∑
n=0

cn+2(n+ 2)(n+ 1)tn +

∞∑
n=1

cn−1kt
n.
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By following Step 4 in the above prescription, in order to combine the above se-
ries expressions into a single expression, both series must start at n0 = 1. Upon
recognizing that

∞∑
n=0

cn+2(n+ 2)(n+ 1)tn = 2c2 +
∑
n=1

cn+2(n+ 2)(n+ 1)tn,

we obtain the identity

0 = 2c2 +

∞∑
n=1

cn+2(n+ 2)(n+ 1)tn +

∞∑
n=1

cn−1kt
n

= 2c2 +

∞∑
n=1

(cn+2(n+ 2)(n+ 1) + cn−1k) t
n

from which, in view of Step 5, we conclude that c2 = 0 and

cn+2(n+ 2)(n+ 1) + cn−1k = 0

for all n = 1, 2, . . . in order for y(t) to satisfy the differential equation. This says
that c2 = 0 and

cn+2 = − k

(n+ 2)(n+ 1)
cn−1

for n ≥ 1; the latter is an indicial equation which gives a relationship that deter-
mines the coefficients {cn} iteratively. A final reindexing gives c2 = 0 and the final
(equivalent) indicial equation

cn+3 = − k

(n+ 3)(n+ 2)
cn (3.34)

for n = 0, 1, 2, . . . . In view of Step 6, we make the following observations from the
indicial equation (3.34).

1. If c0 is known (or chosen), then (3.34) determines the coefficients c3, c6, c9, . . . .

2. If c1 is known (or chosen), then (3.34) determines the coefficients c4, c7, c10, . . . .

3. Since c2 must be zero, (3.34) forces c5 = c8 = c11 = · · · = 0.

With these observation, it is apparent that we are free to choose c0 and c1 and,
once chosen, all other coefficients are determined uniquely and so the solution y(t)
is determined uniquely. Our freedom to choose two constants c0 and c1 coincides
exactly with the fact that initial value problems come equipped with two initial
conditions and equivalently that the ker(L) is two-dimensional. In this way, if we
make two linearly independent choices for c0 and c1, we will obtain two linearly
independent solutions. To this end, let’s choose c0 = 1 and c1 = 0. Then, we have

c3 = − k

3 · 2
c0 =

−k
3 · 2

c6 = − k

6 · 5
c3 =

k2

6 · 5 · 3 · 2
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and, in general,

c3n =
(−1)nkn

(3n)(3n− 1)(3n− 3)(3n− 4) · · · (3)(2)
.

for n = 0, 1, 2, . . . . Also, since c1 = 0 and c2 = 0, we see that c1 = c2 = c4 = c5 =
c7 = · · · = 0. Based on this choice of c0 and c1, the corresponding solution is

y1(t) =

∞∑
n=0

c3nt
3n

=

∞∑
n=0

(−1)nkn

(3n)(3n− 1)(3n− 3)(3n− 4) · · · (3)(2)
t3n

= 1− k

6
t3 +

k2

180
t6 − k3

12960
t9 + · · ·+

Making the choice c0 = 0 and c1 = 1, analogous reasoning gives us the solution

y2(t) =

∞∑
n=0

(−1)nkn

(3n+ 1)(3n)(3n− 2)(3n− 3) · · · 4 · 3
t3n+1

= t− k

3 · 4
t4 +

k2

504
t7 − k3

54360
t9 + · · ·

It can be verified that both solutions y1 and y2 have infinite radii of convergence,
i.e., they converge absolutely on R. By design, we note that

wy1,y2
(0) = 1 · 1− 0 · 0 = 1 ̸= 0

and so our solutions constructed must form a fundamental generating sets of solu-
tions to (3.33). The following figure illustrated the solutions y1(t) and y2(t) to Airy’s
equation.
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Exercise 37

By assuming each equation below may be solved by a power series of the form
y(t) =

∑∞
n=0 cnt

n, solve each equation given the specified values of c0 and c1. In
the process, please identify the indicial equation and give a non-recursive formula
(analogous to (3.32), which could be defined piece-wise) for the coefficients cn. If the
power series obtained is easily identifiable as a function you know (as was cos(2t),
say what this function is.

1.
y′′ − 9y = 0 c0 = 1, c1 = −3

2.
y′′ − t2y = 0 c0 = 1, c1 = 0

Exercise 38

Consider Bessel’s differential equation with parameter ν = 0:

t2y′′ + ty′ + t2y = 0.

1. Explain why this equation does not satisfy the hypotheses of Theorem 3.1.1
on any open interval I containing t0 = 0.

As expected by your conclusion above, this differential equation is somewhat poorly
behaved on intervals containing zero. For example, we cannot expect to find two
linearly independent solutions y1 and y2 with which we can solve every initial value
problem with initial time t0 = 0. Still however, this differential equation is incredibly
importanta and the method of power series does help produce a solution which is
well-behaved at t0 = 0. To this end, assume that

y(t) =

∞∑
n=0

cnt
n

solves the given differential equation.

2. By assuming that c0 = 1, which turns out to be enough to determine all
remaining coefficients, find the corresponding solution.

aIt appears, for instance, in the study of vibrations of a drum.

3.6 The inhomogeneous problem

In this section, we turn our focus to linear inhomogeneous second-order differential equa-
tions. These, as you recall, are equations of the form

L[y] = y′′ + py′ + qy = r (3.35)

where p, q and r are continuous functions on an open interval I, i.e., p, q, r ∈ C0(I). As
we will see, it is also important to study the homogeneous equation

L[y] = y′′ + py′ + qy = 0 (3.36)
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in conjunction with the corresponding inhomogeneous equation (3.35). Let’s make an
observation in this direction: Suppose that, somehow, you know a solution yp to (3.35),
called a particular solution . Then, given any solution yh to the homogeneous equation
(3.36), we have

L[yp + yh] = L[yp] + L[yh] = r + 0 = r

by virtue of the linearity of L. In other words, y = yp + yh also satisfies (3.35) given any
solution yh to (3.36). As the next proposition shows, all solutions to (3.35) are of this
form.

Proposition 3.6.1. Let yp be a particular solution to the inhomogeneous equation (3.35).
Then every solution to (3.35) is of the form

y = yp + yh

where yh solves the homogeneous equation (3.36).

The proposition above allows you to produce any solution to the inhomogeneous problem
(3.35) by simply knowing a single solution yp. This gives an easy recipe for producing
general solutions thereby solving initial value problems. Before proving the proposition,
we summarize this simple observation as the following corollary.

Corollary 3.6.2. Let yp be a particular solution to the inhomogeneous equation (3.35)
and let y1 and y2 form a fundamental generating set of solutions to the homogeneous
equation (3.36), equivalently, {y1, y2} is a basis for ker(L). Then

y = yp + C1y1 + C2y2

is a general solution to (3.35) in the sense that every initial value problem for (3.35) can
be solved by specifying constants C1 and C2.

Proof of Proposition 3.6.1. Given an arbitrary solution y to (3.35), consider the difference
y − yp where yp is the given particular solution. Observe that

L[y − yp] = L[y]− L[yp] = r − r = 0

by virtue of the linearity of L. This shows that y − yp ∈ ker(L) and is therefore equal to
some yh solving the homogeneous equation (3.36). Consequently y = yp+y−yp = yp+yh,
as desired.

Example 11

Consider the initial value problem{
y′′ + y = t y(0) = 0 y′(0) = 2.

To apply our theory above, we first focus on the inhomogeneous differential equation

y′′ + y = t. (3.37)

By observation (we will do this systematically in the next section), we see (or guess)
that

yp(t) = t

is a solution to (3.37) because

(yp(t))
′′ + yp(t) =

d2

dt2
t+ t = 0 + t = t
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for all t ∈ R. Let’s note that yp does not solve the given initial value problem
because y′p(0) = 1 ̸= 2, so we have to keep looking. We note that y1(t) = cos(t) and
y2(t) = sin(t) form a fundamental generating set of solution to the homogeneous
equation

y′′ + y = 0.

Thus, in view of Corollary 3.6.2,

y = yp + C1y1 + C2y2 = t+ C1 cos(t) + C2 sin(t)

is a general solution to (3.37). Let’s find the C1 and C2 giving the solution to the
given initial value problem. We want

0 = y(0) = 0 + C1 cos(0) + C2 sin(0) = C1

and

2 = y′(0) =
d

dt
(t+ C1 cos(t) + C2 sin(t))|t=0 = 1− C1 sin(0) + C2 cos(0) = 1 + C2

and therefore C2 = 1. Thus the initial value problem has the unique solution

y(t) = t+ sin(t).

In this section, we developed a theory for solving linear inhomogeneous second-order
equations. As we saw, this theory is closely tied to the theory for solving homogeneous
equations. Essentially, what we learned is this: To produce all solutions (or solve any ini-
tial value problem) for an inhomogeneous linear differential equation L[y] = r, you simply
need to know one solution yp, which we’ve called a particular solution. All other solutions
are produced by adding something in ker(L). This sets us on the quest to find a method
for producing particular solutions. As you say in the previous example, sometimes par-
ticular solutions can be guessed. In fact, in the next section we will study an effective and
systematic method for guessing called the method of undetermined coefficients. Beyond
the method of undetermined coefficients, the following two exercises highlight methods
for finding particular solutions to inhomogeneous equations. First exercise considers the
very special case that the differential equation does not explicitly involve y, i.e., q = 0.
The second exercise employs power series methods.

Exercise 39

Consider the second order linear inhomogeneous differential equation

L[y] = y′′ + y′ = sin(t) (3.38)

with homogeneous counterpart

L[y] = y′′ + y′ = 0. (3.39)

To find a general solution to (3.38), in view of Corollary 3.6.2, we must find a par-
ticular solution, yp, to (3.38) and a fundamental generating set of solutions {y1, y2}
to (3.39). To this end, please do the following.

1. To find a particular solution to (3.38), we set u = y′ and obtain a first order
linear equation in u. What is this equation?
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2. Solve the equation you found for u. As we’re only looking for a single particular
solution, you integration constant C can be taken to be zero. Once you have
the solution u, integrate (and again, your constant of integration can be taken
to be zero) to find a particular solution yp.

3. Verify that the solution you found, yp, is indeed a solution to (3.38).

4. Now, find a fundamental generating set of solution to (3.39).

5. In view of Corollary 3.6.2, write down a general solution to (3.38).

6. Use your general solution to solve the initial value problem
y′′ + y′ = sin(t)

y(0) = 1

y′(0) = 1

.

Exercise 40

Find a particular solution yp to the linear second order inhomogeneous equation

y′′ − y = 2et

by first recognizing that

et =

∞∑
n=0

1

n!
tn = 1 + t+

1

2
t2 +

1

6
t3 + · · · .

To do this, you should assume that the particular solution y = yp has convergent
power series representation of the form

y(t) =

∞∑
n=0

cnt
n

and plug it in to the inhomogeneous equation (where the power series for 2et has
been put on the right-hand side) and follow the usual steps to identify the coefficients
{cn}. As with solving homogeneous equations, you will have some choice with the
first couple of coefficients. Please choose c0 = 0 and c1 = 1.

3.7 Undetermined Coefficients

In this section, we focus on producing particular solutions to second order linear constant-
coefficient inhomogeneous differential equations, where the inhomogeneous term r is of a
certain familiar form. That is, we consider the inhomogeneous equation

y′′ + by′ + cy = r(t) (3.40)

where r(t) is a polynomial, exponential function, trigonometric function or a linear com-
bination thereof. As derivatives of such functions are of a similar character to the original
function, to produce a solution to the inhomogeneous equation, it makes sense to guess
that a particular solution yp looks like the function r(t). Making this educated guess is
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at the heart of the method of undetermined coefficients. Let’s turn to an example to
illustrate this process.

Example 12

Consider the inhomogeneous equation

y′′ + y′ − 2y = 20 cos(2t) (3.41)

for which we seek a particular solution. As we want to find a function yp whose
derivatives make the linear combination of the left hand side equal to cos(2t), it
makes sense to to assume that yp itself looks like A cos(2t) for some constant A.
Unfortunately, this doesn’t quite work because

(A cos(2t))′′ + (A cos(2t))′ − 2(A cos(2t))

= −4A cos(2t)− 2A sin(2t)− 2A cos(2t)

= −6A cos(2t)− 2A sin(2t)

̸= 20 cos(2t)

for any choice of A due to the term containing sin(2t). To get this term to cancel
out, we adjust our guess by adding a term involving sin(2t). That is, we consider

yp(t) = A cos(2t) +B sin(2t)

for some undetermined coefficients A and B which we hope to determine by plugging
yp into the differential equation. We have

y′′p (t) + y′p(t)− 2yp(t) = (A cos(2t) +B sin(2t))′′ + (A cos(2t) +B sin(2t))′

−2(A cos(2t) +B sin(2t))

= −4A cos(2t)− 4B sin(2t) + (−2A sin(2t) + 2B cos(2t))

−2A cos(2t)− 2B sin(2t)

= −4A cos(2t)− 4B sin(2t)− 2A sin(2t) + 2B cos(2t)

−2A cos(2t)− 2 sin(2t)

= (−6A+ 2B) cos(2t) + (−6B − 2A) sin(2t)

for all t ∈ R. Thus, for yp(t) = A cos(2t) + B sin(2t) to solve the inhomogeneous
equation, we must have

(−6A+ 2B) cos(2t) + (−6B − 2A) sin(2t) = 20 cos(2t)

for all t ∈ R and, due to the linear independence of sin(2t) and cos(2t), we must
have

−6A+ 2B = 20 and − 6B − 2A = 0.

This is a 2 × 2 linear system in the variables A and B and we can solve it to find
that

A = −3 and B = 1.

Thus, our particular solution (which you should directly verify is a solution) is

yp(t) = −3 cos(2t) + sin(2t).
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Noting that y1(t) = et and y2(t) = e−2t form a fundamental generating set of
solutions to the homogeneous equation,

y′′ + y′ − 2y = 0,

Corollary 3.6.2 gives

y(t) = C1e
t + C2e

−2t − 3 cos(2t) + sin(2t)

as the general solution to the inhomogeneous equation (3.41).

In looking closely at our example above, the essential idea of the method of undetermined
coefficients is to look at the function r(t) in the giving inhomogeneous equation (3.40).
If r(t) is sine, cosine, polynomial, exponential or a linear combination thereof, your guess
yp should be a linear combination of functions (and their derivatives) in the same form
as r(t). The coefficients in your linear combination are, a priori, unknown and your goal
is find them by plugging your guess yp into the differential equation and find the correct
coefficients to make the equation hold. For this reason this procedure is known as the
method of undetermined coefficients. The following table will help in this task.

r(t) yp(t)

aert Aert

a cos(ωt) + b sin(ωt) A cos(ωt) +B sin(ωt)

aert cos(ωt) + bert sin(ωt) Aert cos(ωt) +Bert sin(ωt)

a0 + a1t+ a2t
2 + · · ·+ ant

n A0 +A1t+ · · ·+Ant
n

Any sum of the items in this column A sum of the items in this column

Table 3.1: A guess table for the method of undetermined coefficients

Example 13
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Consider the inhomogeneous equation

y′′ + y = e2t + e−t + t

to which we seek a particular solution yp. As r(t) = e2t + e−t + t is a sum of the
exponentials e2t and e−t and the first-order polynomial p(t) = t, Table 3.1 suggests
that we try the function

yp(t) = Ae2t +Be−t + Ct+D

as a candidate for our solution. We have

y′p(t) = 2Ae2t −Be−t + C

and
y′′p (t) = 4Ae2t +Be−t

and therefore

y′′p (t) + yp(t) = 4Ae2t +Be−t +Ae2t +Be−t + Ct+D

= 5Ae2t + 2Be−t + Ct+D.

For the inhomogeneous equation to be satisfied by yp, we must have

5Ae2t + 2Be−t + Ct+D = e2t + e−t + t.

By the linear independence of the function e2t, e−t, t and 1, we conclude that this
can hold if and only if the coefficients on both sides of this equation match. That is

5A = 1, 2B = 1, C = 1 and D = 0.

Consequently, A = 1/5, B = 1/2, C = 1, D = 0 and so our particular solution is

yp(t) =
1

5
e2t +

1

2
e−t + t.

An appeal to Corollary 3.6.2 shows that

y(t) = C1 cos(t) + C2 sin(t) +
1

5
e2t +

1

2
e−t + t

is a general solution to the given inhomogeneous equation.

In the following example, we study a case in which Table 3.1, on its own, does not yield
a particular solution.

Example 14

Consider the inhomogeneous equation

y′′ + y = cos(t).

Based on Table 3.1, our candidate for a particular solution should be of the form

yp(t) = A cos(t) +B sin(t).
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In this case, we see that

y′′p (t) + yp(t) = (A cos(t) +B sin(t))′′ + (A cos(t) +B sin(t))

= −A cos(t)−B sin(t) +A cos(t) +B sin(t)

= (A−A) cos(t) + (B −B) sin(t)

= 0.

Through this, we see that we are unable to select constants A and B for which
yp(t) = A cos(t) +B sin(t) solves the inhomogeneous equation because

y′′p (t) + yp(t) = 0 ̸= cos(t).

The essential problem in the above example is that r(t) = cos(t) itself satisfies the corre-
sponding homogeneous equation

y′′ + y = 0.

Consequently, the guess yp(t) = A cos(t)+B sin(t), based on the form of r(t), also satisfies
the homogeneous equation and therefore cannot solve the given inhomogeneous equation.
This observation pertains to the general picture: If r(t) in (3.40) satisfies the correspond-
ing homogeneous equation

y′′ + by′ + cy = 0 (3.42)

then any guess yp based on r(t) coming from Table 3.1 will itself satisfy (3.42) and
therefore cannot satisfy (3.40). Fortunately, there is a simple fix for this: simply multiply
by the monomial t and let the product rule take care of the rest. Let’s return to our
example to give this a try.

Example 15

Again, we consider the inhomogeneous equation

y′′ + y = cos(t).

Multiplying our original guess A cos(t) +B sin(t) by t, gives the new guess

yp(t) = At cos(t) +Bt sin(t).

In view of the product rule, we have

y′p(t) = A cos(t) +B sin(t)−At sin(t) +Bt cos(t)

and

y′′p (t) = −A sin(t) +B cos(t)−A sin(t) +B cos(t)−At cos(t)−Bt sin(t)

= −2A sin(t) + 2B cos(t)−At cos(t)−Bt sin(t).

Consequently,

y′′p (t) + yp(t)

= −2A sin(t) + 2B cos(t)−At cos(t)−Bt sin(t) +At cos(t) +Bt sin(t)

= −2A sin(t) + 2B cos(t)
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and so, for yp to solve the inhomogeneous equation, we identify

−2A sin(t) + 2B cos(t) = cos(t).

Thus, A = 0 and 2B = 1 from which we obtain

yp(t) =
1

2
t sin(t)

as a particular solution.

In general, we state this as a principle.

Principle: If any part of the initial guess yp, based on Table 3.1, satisfies the homoge-
neous differential equation (3.42), replace this term with itself multiplied by t.

Exercise 41

Using the theory of inhomogeneous equations, find general solutions to the following
inhomogeneous differential equations.

1.
y′′ + 3y′ + 2y = cos(t)

2.
y′′ + 4y = e2t

3.
y′′ − 4y = e2t

Use the theory of inhomogenous equations to solve the following initial value prob-
lems.

1. 
y′′ + 3y′ + 2y = cos(t)

y(0) = 1
y′(0) = 0

2. 
y′′ − 4y = e2t

y(0) = 0
y′(0) = 1

3.8 Application: Damped, Undamped and Forced Os-
cillation

In this section, we focus on a particular application of linear second-order constant-
coefficient differential equations. This is the study of harmonic oscillators and, in partic-
ular, we study the cases of undamped, damped, forced and unforced oscillation. To set
up the general problem, consider an object of mass m, measured in kilograms (kg), which
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u(t)
u=0

m

Figure 3.1: An object of massm connected to a spring and sliding on a frictionless surface.

rests on a surface and is connected to a wall by means of a spring. This is illustrated
in Figure 3.1. Let us denote by u = u(t) the displacement of the object from the rest
position (u = 0) as a function of time t; we shall measure u(t) in meters and t in seconds
(s). Assuming that the motion of the object is modeled by Hooke’s law, the force done
on the object by the spring, measured in Newtons (N), is given by

Fspring = −ku

where k > 0 is the so-called spring constant with units of Newton per meter. The spring
force Fspring is also known as a restoring force as it pulls the object back to the equilibrium
position with a magnitude proportional to the distance from equilibrium.

3.8.1 Free and undamped motion

Let us assume that the object attached to the spring, described above, undergoes fric-
tionless and unforced motion. That is, we assume that there are no frictional/damping
forces on the object nor any other external forces beyond those given by the spring. In
this case, Newton’s second law gives us the equation of motion

mü = mass× acceleration = Fspring = −ku.

This is equivalently written as
ü+ ω2

0u = 0 (3.43)

and called the equation of free and undamped harmonic motion where the constant

ω0 :=

√
k

m
(3.44)

is called the natural frequency of oscillation and has units 1/s. This is a second order
linear homogeneous constant coefficient differential equation. An appeal to our theory
for such equations gives the general solution

u(t) = C1 cos(ω0t) + C2 sin(ω0t) (3.45)
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for t ∈ R. Correspondingly, if the initial position and velocity of the object are known to
be u0 and u′0 respectively, the initial value problem

ü+ ω2
0u = 0

u(0) = u0

u̇(0) = u′0

is solved by (uniquely) specifying C1 and C2 in (3.45). This concludes our treatment of
free (unforced) undamped oscillation. To check your understanding of the situation, and
the solution, I encourage you to return to the introductory section and read the example
on Newton’s second law and watch the correspoinding Spray Paint Oscillator video from
MIT’s Physics Department [1] (Click here). Does the experiment in the view coincide
with what we’ve done here?
Note Here

3.8.2 Damped Free Oscillatory Motion

The physical situation described in the preceding subsection assumes that the moving
object is not subject to frictional forces. It is therefore an idealized model and unrealistic.
Any realistic model must account for frictional/damping forces, including the friction
between the object and the surface on which it rests, the energy lost in the expansion and
contraction of the crystalline structure which makes up the spring and air resistance on
the object. As a first-order model, we can account for this friction by considering a force
which is proportional to the velocity u̇ and opposite in sign, i.e.,

Fdamp = −cu̇

where c is a non-negative real number called a damping coefficient. We note that the
magnitude of this force increases and decreases along with the speed of the object and
is always opposed to the direction of motion. You should think about why this makes
Fdamp = −cu̇ a reasonable model for friction/damping. Accounting for this force, Newton’s
second law gives

mü = mass× acceleration = Fdamp + Fspring = −cu̇− ku

or, equivalently,

ü+
c

m
u̇+

k

m
u = 0. (3.46)

This is the equation of free (undriven) damped harmonic motion. Before we turn our
focus to the study of its solutions, let’s consider the following exercise which studies
(3.46) from an energy perspective. The exercise leads to an interesting application: an
alternate proof (in addition to the Picard-Lindelöff theorem) that solutions to to initial
value problems for (3.46) are unique.

Exercise 42

Consider an object of mass m whose displacement u ∈ C2(R) satisfies the equation

L[u] = mü+ cu̇+ ku = 0.

Throughout this exercise, we only assume that u is twice differentiable and satisfies
the equation abovea. To u we associate the following useful quantity: For t ≥ 0, we
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define

E(t) =
m

2
(u̇(t))2 +

k

2
(u(t))2 (3.47)

called the energy of u at time t; note that E(t) ≥ 0 for all t. By the fundamental
theorem of calculus, we easilyb observe that

E(t) = E(0) +

∫ t

0

dE

dt′
dt′ = E(0) +

∫ t

0

(mu̇(t′)ü(t′) + ku(t′)u̇(t′)) dt′ (3.48)

1. Using (3.48) and the fact that mü+ cu̇+ ku = 0, show that

E(t) = E(0)− c

∫ t

0

(u̇(t′))2 dt′ (3.49)

for all t > 0.

2. Using the above result, conclude that, if c = 0, E(t) = E(0) for all time t.
The interpretation of this fact is this: Energy is conserved for an undamped
free oscillator (this gives more justification that the constant c represents fric-
tion/damping).

3. In the general case that c ≥ 0, use (3.49) to show that E is a non-increasing
function of time.

4. In the next two items, we use the energy E to prove the uniqueness statement
in the Picard-Lindelöf theorem. First, suppose that u(0) = 0 and u̇(0) = 0,
use (3.47) and the previous item to show that E(t) = 0 for all t. Conclude
that u(t) = 0 for all t.

5. Now suppose that u1 and u2 solve the initial value problem

{L[u] = mü+ cu̇+ ku = 0, u(0) = u0 and u̇(0) = u̇0

where u0 and u̇0 are fixed constants. By considering u = u2−u1 and applying
your results from the previous item, show that u1(t) = u2(t) for all t. In this
way, you prove the uniqueness statement of the Picard-Lindelöf theorem.

6. What’s the moral of this exercise?

aIn other words, there is no reason to come up with an explicit formula for u.
bYou should check this computation.

Let’s now turn our focus to solving (3.46). To this end, we consider the characteristic
polynomial

r2 +
c

m
r +

k

m
= 0

which has solutions

r = − c

2m
± 1

2m

√
c2 − 4km.

In looking at Theorem 3.5.4, we have three cases to consider:

1. Underdamped Motion: In the case that c2 < 4km, meaning that the damping
is small relative to the product of the spring constant and the mass of the object,
the solutions to characteristic polynomial are complex-valued. Here,

r = − c

2m
± ωi
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where

ω = ω(c, k,m) =

√
4km− c2

2m
and so

u(t) = C1e
− c

2m t cos(ωt) + C2e
− c

2m t sin(ωt)

is a general solution to (3.46) in the case that c2 < 4km. This is so-called under-
damped harmonic motion. We see that the solutions decay on the order of e−ct/2m

in amplitude (which depends on the damping coefficient c) while oscillating ad in-
finitum with frequency ω = ω(c, k,m). We note that this model recaptures our
model of undamped harmonic motion when c = 0 and, in this case, ω(0, k,m) = ω0.

2. Overdamped Motion: In the case that c2 > 4km, i.e., the case in which the
damping coefficient is large relative to the product of the spring coefficient and the
mass of the oscillator, we obtain so-called overdamped motion. Here, the solutions
to the characteristic polynomial are real valued and of the form

r1 = − c

2m
+

√
c2 − 4km

2m
and r2 = − c

2m
−

√
c2 − 4km

2m

giving the general solution

u(t) = C1e
r1t + C2e

r2t

to (3.46) in the case of overdamped motion. We note that 0 <
√
c2 − 4km <

√
c2 = c

and so it follows that

r1 = − c

2m
+

√
c2 − 4km

2m
< 0

giving the inequality r2 < r1 < 0. This ensures that the non-oscillatory general
solution C1e

r1t + C2e
r2t decays exponentially to 0 at the rate e−r1t (i the slowest

case).

3. Critically Damped Motion: The final possibility is the critical case in which
c2 = 4km; this is called critically damped motion. An appeal to Theorem 3.5.4
gives the general solution

u(t) = C1e
− c

2m t + C2te
− c

2m t = (A+Bt)e−
c

2m t

which illustrates that the motion is non-oscillatory and decays exponentially to 0.

Note Here

Exercise 43

1. Show that, in the case of overdamped or critically damped motion, the mass
can pass through its zero displacement position at most once, regardless of the
initial conditions.

2. In the case of critically damped motion, show that the solution to the intial
value problem with initial conditions u(0) = u0 > 0 and u̇(0) = 0 has the
property that u(t) → 0 as t→ ∞ but u(t) ̸= 0 for any finite value of t ≥ 0.

3. Again, in the case of critically damped motion such that u(0) = u0 > 0, find
conditions on u̇(0) that guarantee that u will pass though its zero displacement
at some time t.

Note Here
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Exercise 44

We now study forced undamped motion:

mü+ ku = F (t) (3.50)

where we set ω0 =
√
k/m, called the natural frequency of oscillation.

1. If F (t) = sin(ωt) for a constant ω ̸= ω0, use the method of undetermined
coefficients to find a general solution to (3.50). Use your general solution to
solve the general initial value problem

{mü+ ku = sin(ωt), u(0) = 0, u̇(0) = 1.

In the case that m = k = 1 and ω = 2, plot your solution. Do you see
resonance?

2. If F (t) = sin(ω0t), use the method of undetermined coefficients to find a general
solution to (3.50). Use your general solution to solve the general initial value
problem

{mü+ ku = sin(ω0t), u(0) = 0, u̇(0) = 1.

In the case that m = k = 1, plot your solution. Do you see resonance?

3. Analyze the case in which F (t) = sin(ωt)+sin(ω0t). Does this example exhibit
resonance?

here
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Chapter 4

Systems

In this chapter, we study first-order coupled systems of ordinary differential equations.
In the previous chapters, we’ve focused on the theory and applications of scalar equa-
tions. There the idea was to find a real-valued (scalar) function y = y(t) which satisfied
a scalar equation relating y and its derivatives, y′, y′′, . . . . By contrast, a coupled first-
order n×n system of differential equations is formed by specifying n ordinary differential
equations which relate n functions x1(t), x2(t), . . . , xn(t) and their first-order derivatives,
ẋ1(t), ẋ2(t), . . . , ẋn(t).

To motivate our study of systems, we look to biology for a simple yet fascinating mathe-
matical model, called the predator-prey model, of the population dynamics of two com-
peting species. Suppose that the population of a species – the prey– is given by a function
P (t) and the population of another species – the predators – is modeled by a function
K(t). Making a number of assumptions and simplifications concerning the interaction
between predator and prey, the Lotka-Volterra model says that the populations evolve
according to the following equations,

Ṗ (t) = aP (t)− bP (t)K(t)

K̇(t) = cP (t)K(t)− dK(t), (4.1)

called the Lotka-Volterra equations or the predator-prey equations. Here Ṗ = dP/dt,
K̇ = dK/dt and a, b, c, d are all positive numbers which depend on the dynamics of
interaction of the two competing species. The first equation

Ṗ (t) = aP (t)− bP (t)K(t),

called the prey equation, says that the population P of the prey species increases at a
rate aP (t) while decreasing at a rate bP (t)K(t). This captures the idea that the prey
species has unlimited food and constantly reproduces while simultaneously gets killed off
at a rate which depends on both the predator and prey populations. By contrast, the
predator equation

K̇(t) = cP (t)K(t)− dK(t)

says that the population K of the predator species increases at a rate cP (t)K(t) while
simultaneously dying at a rate of dK(t), due to natural death. In taking these two
equations together, we see that the resulting 2 × 2 system (4.1) is truly coupled in the
sense that changes in the one population is driven by the value of both that population
and the population of its competitor.

In studying the Lotka-Volterra equations, we are interested to know the evolution of
both predator and prey populations given that initial populations are known. In other
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words, we are generally interested in solving the the system (4.1) subject to the initial
conditions

P (0) = P0 and K(0) = K0

where P0 and K0 are the known initial populations of predator and prey respectively.
Though, in general, solving such initial value problems is not possible in terms of simple
(trigonometric, exponential) functions, this system is relatively straightforward to analyze
and we will do so with qualitative methods, analogous to those discussed in Chapter 1.
NOTE HERE

4.1 First-order n × n systems and their initial value
problems

Let’s here begin to formalize precisely some of the terminology introduced in the introduc-
tory section. A n×n first-order system of ordinary differential equations is, by definition,
a system of equations of the form

ẋ1 = F1(t, x1, x2, . . . , xn)

ẋ2 = F2(t, x1, x2, . . . , xn)

...
...

ẋn = Fn(t, x1, x2, . . . , xn) (4.2)

where, for each k = 1, 2, . . . , n, Fk is a real-valued function of the n + 1 variables,
t, x1, x2, . . . , xn. We shall assume that all function F1, F2, . . . , Fk are defined and contin-
uous on a common domain; more precisely, that there is some open interval I such that,
for each k = 1, 2, . . . , n, Fk : I × Rn → R is continuous1. To solve such a system means
to find n once-continuously differentiable real-valued functions x1(t), x2(t), . . . , xn(t) for
which

ẋ1(t) = F1(t, x1(t), x2(t), . . . , xn(t))

ẋ2(t) = F2(t, x1(t), x2(t), . . . , xn(t))

...
...

ẋn(t) = Fn(t, x1(t), x2(t), . . . , xn(t))

for all t in a common (and non-trivial) subdomain J of I; here we use notation that, for
each k = 1, 2, . . . , n, ẋk(t) = dxk/dt. To simplify notation, it is useful to put these ideas
in terms of vector-valued functions. To this end, we define F : I × Rn → Rn by putting

F (t,x) = F (t, x1, x2, . . . , xn) =


F1(t, x1, x2, . . . , xn)
F2(t, x1, x2, . . . , xn)

...
Fn(t, x1, x2, . . . , xn)


for all (t,x) = (t, x1, x2, . . . , xn) ∈ I × Rn. In these terms, the n × n system (4.2) is
equivalently written as,

ẋ = F (t,x) (4.3)

1Here I × Rn = {(t, x1, x2, . . . , xn) ∈ Rn+1 : t ∈ I and x1, x2, . . . , xn ∈ R}.
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where x is of the form

x(t) =


x1(t)
x2(t)
...

xn(t)

 and ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 .

To talk about a “solution” to (4.3) (and hence (4.2)), it’s useful to give a definition.

Definition 4.1.1. Let I be an open interval and consider a vector-valued function x :
I → Rn defined by

x(t) =


x1(t)
x2(t)
...

xn(t)


where x1(t), x2(t), . . . , xn(t) are functions mapping from I to R, called the components
of x. We say that x is continuous on I if its components are all continuous functions
on I, i.e., x1, x2, . . . , xn ∈ C0(I). The set of all such continuous functions is denoted by
C0(I;Rn). We say that x is once-continuously differentiable on I if its components are
all once-continuously differentiable on I, i.e., x1, x2, . . . , xn ∈ C1(I). In this case, the
derivative of x is defined by

ẋ(t) =


ẋ1(t)
ẋ2(t)
...

ẋn(t)


for t ∈ I. The set of all such once-continuously differentiable is denoted by C1(I;Rn).

Remark 4.1.2. As was true for scalar-valued functions, C1(I;Rn) ⊆ C0(I;Rn). In fact,
both of these sets are infinite-dimensional vector spaces and C1(I;Rn) is a subspace of
C0(I;Rn). Not surprisingly, viewing these as vector spaces will be helpful to us when
studying linear systems. Also, it should be noted that derivative ẋ of x coincides with
the Jacobian derivative of x.

By definition, a solution to the system (4.3) (equivalently (4.2)) is a vector-valued function
x ∈ C1(J ;Rn) which has

ẋ(t) = F (t,x(t))

for all t ∈ J where J is some (non-trivial) subinterval of I. As was true for scalar equa-
tions, there are often multiple (an infinite number) of solutions to a given n × n system
of differential equations. Of course, it is of interest to select a solution (among the many)
which satisfies certain given initial conditions. To this end, introduce the concept of an
initial value problem.

An initial value problem for (4.3) comes by specifying an initial time t0 ∈ I and a constant
vector

x0 =


x1,0
x2,0
...

xn,0

 ∈ Rn

and asking for solutions to (4.3) to satisfy

x(t0) = x0.
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We write such an initial value problem as

{ẋ(t) = F (t,x(t)), x(t0) = x0

or {
ẋ = F (t,x)

x(t0) = x0

.

We are now ready to state the Picard-Lindelöff theorem for systems. As we shall see, this
one theorem will capture all Picard-Lindelöff theorems seen previously.

Theorem 4.1.3 (The Picard-Lindelöf Theorem for n × n Systems). Let I ⊆ R be an
interval and consider the n× n system

ẋ = F (t,x)

where F : I × Rn → Rn has components F1, F2, . . . , Fn : I × Rn → R. If the components
F1, F2, . . . , Fn are all continuous on I × Rn and the partial derivatives

∂F1

∂x1
,
∂F1

∂x2
, . . . ,

∂F1

∂xn
;
∂F2

∂x1
,
∂F2

∂x2
, . . . ,

∂F2

∂xn
; . . . ; . . . ;

∂Fn

∂x1
,
∂Fn

∂x2
, . . . ,

∂Fn

xn

are continuous on I × Rn, then, given any t0 ∈ I and fixed vector x0 ∈ Rn, the initial
value problem

{ẋ = F (t,x), x(t0) = x0 (4.4)

has a unique solution x ∈ C1(J ;Rn) where J is a subinterval of I (possibly equal to I)
containing t0, i.e., t0 ∈ I0 ⊆ I.

Here

4.2 Linear Systems

A class of n × n systems which will be of great interest for us are linear systems. Un-
derstanding these systems, especially the so-called constant-coefficient linear systems will
be fundamental to our understanding of non-linear systems, such as the Lotka-Volterra
equations discussed in the introductory section. An n × n linear systems of first-order
ordinary differential equations is a system of the form

ẋ1 = p11(t)x1 + p12(t)x2 + · · ·+ p1n(t)xn + g1(t)

ẋ2 = p21(t)x1 + p22(t)x2 + · · ·+ p2n(t)xn + g2(t)

...
...

ẋn = pn1(t)x1 + pn2(t)x2 + · · ·+ pnn(t)xn + gn(t).

This can be written in the equivalent form

ẋ = P (t)x+ g(t) (4.5)

where

P (t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnn(t)


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and

g(t) =


g1(t)
g2(t)
...

gn(t)

 .

Specifically, P is a function from some interval I into the set Mn,n(R) of n× n matrices
with real entries, i.e., P : I →Mn,n(R), and by P (t)x we mean the matrix product of P (t)
with a vector-valued function x. We say that (4.5) is homogeneous if the vector-valued
function g is identically zero, i.e., the system (4.5) is

ẋ = P (t)x.

As was true for linear scalar equations, linear algebra is a great tool for understanding
the solutions to n × n linear systems. Looking in this direction, for each interval I, we
recognize that the set of vector valued functions C1(I;Rn) is a real vector space when
equipped with the (perhaps obvious) notion of addition and scalar multiplication: For
x,y ∈ C1(I;Rn) and α ∈ R,

(x+ y)(t) =


x1(t)
x2(t)
...

xn(t)

+


y1(t)
y2(t)
...

yn(t)

 =


(x1 + y1)(t)
(x2 + y2)(t)

...
(xn + yn)(t)

 ∈ C1(I;Rn)

and

(αx)(t) = α


x1(t)
x2(t)
...

xn(t)

 =


αx1(t)
αx2(t)

...
αxn(t)

 ∈ C1(I;Rn).

With precisely the same notions of addition and scalar multiplication, C0(I;Rn) is a
vector space and it is easy to see that C1(I;Rn) is a subspace of C0(I;Rn); they are
both infinite dimensional vector spaces. These spaces can be recognized as path spaces in
the sense that each x ∈ C1(I;Rn) traces a smooth curve (or path) in Rn. For instance,
x ∈ C1(R;R2) defined by

x(t) =

(
e−t/10 cos(t)
e−t/10 sin(t)

)
traces out the spiral illustrated in Figure 4.1. Note Here

Figure 4.1: x(t) = (e−t/10 cos(t), e−t/10 sin(t))⊤ for −10 < t < 10.
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As the following theorem shows, the solutions of linear homogeneous systems form finite-
dimensional subspaces of C1(I;Rn).

Theorem 4.2.1. Consider the matrix-valued function

P (t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnn(t)

 (4.6)

where the components pjk are continuous (real-valued) functions on an interval I of R
and the associated n× n linear system associated to P ,

ẋ(t) = P (t)x(t). (4.7)

Then the set of solutions to (4.7) on the interval I,

S(I) =
{
x ∈ C1(I;Rn) : ẋ(t) = P (t)x

}
,

is an n-dimensional subspace of C1(I;Rn). In particular, there exist n linearly indepen-
dent elements x(1),x(2), . . . ,x(n) ∈ S(I) such that, given any solution x to (4.7) on I,
there exist constants c1, c2, . . . , cn such that

x(t) = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx
(n)(t)

for t ∈ I. Such an expression is called a general solution to the equation ẋ = Px.

The focus of the following exercise is to see how the linear structure of (4.7) (essentially)
gives Theorem 4.2.1 as consequence of Theorem 4.1.3.

Exercise 45: Linear Systems

1. Given an interval I, assume that the entries of the matrix P , defined by (4.6),
are continuous on I, i.e., pj,k ∈ C0(I) for all k, j = 1, 2, . . . , n. Show that the
system

ẋ(t) = P (t)x(t)

satisfies the hypotheses of Theorem 4.1.3.

2. Suppose that x,y ∈ C1(I;Rn) satisfy (4.7). Show that, for any constants
α, β ∈ R, αx+ βy ∈ C1(I;Rn) also satisfies (4.7). In this way, you show that
the set of solutions to (4.7) is a subspace of C1(I;Rn).

3. Assuming that the entries of P are continuous function on the interval I = R
(which we will assume henceforth), use Theorem 4.1.3 to show that the set
of solutions to (4.7) (near t0 = 0) is n-dimensional, i.e., is an n-dimensional
subspace of C1(I0;Rn) for some subinterval I0 ⊆ R. Hint: Take t0 = 0 and
apply Theorem 4.1.3 n times to the n initial vectors

x
(1)
0 = e1 =


1
0
...
0

 , x
(2)
0 = e2 =


0
1
...
0

 , . . . ,x
(n)
0 = en =


0
0
...
1


to obtain solutions x(1)(t),x(2)(t), . . . ,x(n)(t). Show that every solution to
(4.7) can be written as a linear combination of these solutions (this will use
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the uniqueness statement of Theorem 4.1.3. Show that these solutions are also
linearly independent (no need to use the Wronskian).

4. Given continuous functions p(t) and q(t), consider the 2× 2 linear system

ẋ(t) =

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1

−q(t) −p(t)

)(
x1(t)
x2(t)

)
.

Show that the above 2×2 linear system is equivalent to the second-order linear
differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0.

Does your result from the previous item (applied to this system) guarantee our
result from earlier in the semester that ker(L) is 2-dimensional? How? Hint:
Set y = x1, then y

′ = ẋ1 = x2.

Suppose that we are given n solutions x(1)(t),x(2)(t), . . . ,x(n) ∈ C1(I;Rn) to the n × n
linear system

ẋ = Px,

how could we verify that they formed a basis of the solution space S(I)? In light of the
preceding theorem, we simply must verify they are linearly independent. This means, of
course that, if there are constants c1, c2, . . . , cn ∈ Rn for which

c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx
(n)(t) = 0 (4.8)

for all t ∈ I (here 0 = (0, 0, . . . , 0)⊺ is the zero vector), then it must be true that c1 =
c2 = · · · cn = 0. We observe that equation (4.8) can be rewritten in the form

W
(
x(1),x(2), . . . ,x(n)

)
(t)


c1
c2
...
cn

 =


0
0
...
0


where W

(
x(1),x(2), . . . ,x(n)

)
is the n × n matrix whose columns are the vector-valued

functions x(1),x(2), . . . ,x(n), i.e.,

W
(
x(1),x(2), . . . ,x(n)

)
(t)

=
(
x(1)(t)|x(2)(t)| . . . |x(n)(t)

)
=


x
(1)
1 (t) x

(2)
1 (t) . . . x

(n)
1 (t)

x
(1)
2 (t) x

(2)
2 (t) . . . x

(n)
2 (t)

...
...

. . .
...

x
(1)
n (t) x

(2)
n (t) . . . x

(n)
n (t)

 .

Unsurprisingly, we call W =W
(
x(1),x(2), . . . ,x(n)

)
the Wronskian matrix associated to

the vector-valued functions x(1),x(2), . . . ,x(n). Its determinant,

w(x(1),x(2), . . . ,x(n)) = det(W (x(1),x(2), . . . ,x(n))

is called theWronskian determinant. The following proposition gives a sufficient condition
for the vectors x(1),x(2), . . . ,x(n) to be linearly independent.
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Proposition 4.2.2. Let I be an interval and consider n vector-valued functions
x(1),x(2), . . . ,x(n) ∈ C0(I;Rn). If, for some t0 ∈ I, w

(
x(1),x(2), . . . ,x(n)

)
(t0) ̸= 0 (or

equivalently, that W
(
x(1),x(2), . . . ,x(n)

)
(t0) is an invertible matrix), then the vector-

valued functions x(1),x(2), . . . ,x(n) are linearly independent.

Exercise 46

1. Prove the proposition above.

2. Use the proposition to deduce the following fact: If x(1),x(2), . . . ,x(n) ∈
C1(I,Rn) are solutions to the linear homogeneous system ẋ = Px which satisfy
w
(
x(1),x(2), . . . ,x(n)

)
(t0) ̸= 0 for some t0 ∈ I, then every solution to ẋ = Px

can be written in the form

x = c1x
(1) + c2x

(2) + · · ·+ cnx
(n).

3. Suppose that y1 and y2 satisfy the linear differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0

where p, q ∈ C0(I). Use the equivalence of Item 4 of the preceding exercise to
show that the Wonskian condition of Theorem 3.3.5, i.e., that

wy1,y2
(t0) = y1(t0)y

′
2(t0)− y2(t0)y

′
1(t0) ̸= 0

for some t0 ∈ I, is equivalent to the condition obtained in the preceding item
(pertaining to the Wronskian determinant for vector-valued functions). In
other words, show that the Wronskian condition in Theorem 3.3.5 is a special
case of the same condition for vector-valued functions.

4.3 Constant-coefficient linear systems

The theory discussed in the previous section gives the general structure of the theory
of first-order linear systems. Analogous to our theory for higher-order linear (scalar)
equations, the main idea is this: If a basis for the solution space of the linear system can
be gotten, then every solution (and the solution to every initial value problem) can be
expressed as a linear combination of these basis elements. Though bases always exist,
producing them is far from trivial. However, in the special case that the system in question
has constant coefficients, i.e., that P (t) = A is a constant n×n matrix, producing a basis
of the solution space essentially boils down to finding the eigenvalues and eigenvectors of
A. Let’s begin with a simple proposition.

Proposition 4.3.1. Consider the n× n linear system

ẋ = Ax (4.9)

where A is a (constant) n× n matrix. If λ ∈ R is an eigenvalue of A with corresponding
eigenvector v ∈ Rn, then

x(t) = eλtv

is a solution to (4.9).
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Proof. Given that λ is an eigenvalue of A with eigenvector

v =


v1
v2
...
vn

 ,

we have

d

dt

(
eλtv

)
=

d

dt


eλtv1
eλtv2
...

eλtvn

 =


eλtλv1
eλtλv2

...
eλtλvn

 = eλtλ


v1
v2
...
vn

 = eλtAv = A
(
eλtv

)

for t ∈ R. In other words,
ẋ(t) = Ax(t)

for t ∈ R, as desired.

In the following exercise, you will use your background in linear algebra to develop a
theory for the solutions to n × n constant-coefficient systems where the corresponding
matrix A has n distinct real eigenvalues.

Exercise 47: Constant-coefficient linear systems

In what follows, A is an n× n constant matrix.

1. First, let’s treat a purely algebraic result. If λ1, λ2 are distinct eigenvalues of
A with corresponding eigenvectors v1 and v2, show that v1 and v2 are linearly
independent.

2. Suppose now that λ1, λ2 and λ3 are distinct eigenvalues of A with correspond-
ing eigenvectors v1, v2 and v3, show that v1, v2 and v3 are linearly independent.
Hint: You should use your result from the previous item.

3. In light of the previous two items, we will take the following fact for granted
(which you should try to prove if you’re curious):

Fact 4.3.2. Let A be an n× n matrix with distinct eigenvalues λ1, λ2, . . . , λn
and corresponding eigenvectors v1, v2, . . . , vn. Then the vectors v1, v2, . . . , vn
are linearly independent.

Under the hypotheses of the fact above, use properties of determinants to show
that

det(v1|v2| · · · |vn) ̸= 0.

4. As above, let A be an n×n matrix with distinct eigenvalues λ1, λ2, . . . , λn and
corresponding eigenvectors v1, v2, . . . , vn. In view of the proposition,

x(1)(t) = eλ1tv1, x
(2)(t) = eλ2tv2 . . .x(n)(t) = eλntvn

are solutions to the linear system (4.7). Thus, in view of the previous exercise,
it is natural to ask if these n solutions span the solution space, i.e., if they are

132



linearly independent. Using properties of the determinant, show that

W
(
x(1),x(2), . . . ,x(n)

)
(t) = det

(
x(1)(t)|x(2)(t)| · · · |x(n)(t)

)
= e(λ1+λ2+···+λn)t det(v1|v2| · · · |vn)

for t ∈ R. Using the previous results, conclude that x(1),x(2), . . . ,x(n) form a
basis for the solutions space of (4.7).

Note here

Example 1

Consider the constant-coefficient linear system

ẋ = Ax,

where

A =

(
1 −2
3 −4

)
Our aim is to find a general solution for this system – equivalently, a basis for the
solution space to the system. Taking cues from the preceding exercise, let’s find the
eigenvalues of A. We have

det(A− λI) = det

(
1− λ −2
3 −4− λ

)
= (1− λ)(4− λ) + 6

= λ2 + 3λ+ 2

= (λ+ 1)(λ+ 2)

and so λ is an eigenvalue for A if and only if

(λ+ 1)(λ+ 2) = det(A− λI) = 0.

Of course, this gives us eigenvalues λ1 = −1 and λ2 = −2. Since these two eigen-
values are distinct, the result of the previous exercise shows that we can use them
to find a basis to the solution space of the linear system. All we need to do is find
associated eigenvectors.

Let’s first find an eigenvector v1 with eigenvalue λ1 = −1. Necessarily, v1 = (x, y)
is non-zero vector for which

(A− λI)v1 =

(
1− (−1) −2

3 −4− (−1)

)(
x
y

)
=

(
2x− 2y
3x− 3y

)
=

(
0
0

)
and so a suitable choice is gotten by setting x = y = 1. This yields the eigenvector
v1 = (1, 1)⊺ for A with eigenvalue λ1 = −1. By a similar computation (which you
should do), we find that v2 = (2, 3) is an eigenvector for A with eigenvalue λ2 = −2.
To summarize,

v1 =

(
1
1

)
and v2 =

(
2
3

)
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are eigenvectors for A with eigenvalues λ1 = −1 and λ2 = −2, respectively. As you
proved in the preceding exercise, these eigenvectors are necessarily linearly indepen-
dent and so it follows that

x(1)(t) = eλ1v1 = e−t

(
1
1

)
=

(
e−t

e−t

)
and x(2)(t) = eλ2v2 = e−2t

(
2
3

)
=

(
2e−2t

3e−2t

)
form a basis for the solution space to ẋ = Ax and, in view of Theorem 4.2.1,

x(t) = c1

(
e−t

e−t

)
+ c2

(
2e−2t

3e−2t

)
is a general solution to this linear system.

For general n× n constant coefficient linear systems of the form

ẋ = Ax,

which are the perhaps the simplest first-order systems we can analyze, producing general
solutions is an involved task. When the eigenvalues of A are all real and distinct, the
solution space to the system has a nice and simple form as you showed in the preceding
exercise (and we confirmed in the example). Of course, there are many other possibilities
for eigenvalues of an n×n matrix A and writing down a general prescription for solutions
(to cover all possibilities) is possible, but it is perhaps too complicated for our needs. The
main thing you should take away from this discussion is this: Analyzing linear systems
comes down do spectral analysis (the analysis of eigenvalues/eigenvectors).

For simplicity, let’s focus our attention on 2× 2 constant coefficient systems where a
full analysis is within reach. This result is captured by the following proposition.

Proposition 4.3.3. Consider the 2× 2 linear system

ẋ(t) =

(
ẋ(t)
ẏ(t)

)
=

(
a b
c d

)(
x(t)
y(t)

)
= Ax(t).

We have:

• If the eigenvalues λ1 and λ2 of A are real and distinct with corresponding eigenvec-
tors v1 and v2, then a general solution to the 2× 2 system above is given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2

for t ∈ R.

• If A has complex eigenvalues λ = α ± iβ with (necessarily) complex eigenvectors

v = a⃗± i⃗b where a⃗, b⃗ ∈ R2, a general solution to the 2× 2 systems above is given by

x(t) = c1e
αt(cos(βt)⃗a− sin(βt)⃗b) + c2e

αt(cos(βt)⃗b+ sin(βt)⃗a)

for t ∈ R.

• If A has only one eigenvalue (an eigenvalue of multiplicity 2) λ with corresponding
eigenvector v, then a general solution to the 2× 2 system above is given by

x(t) = c1e
λtv + c2(te

λtv + eλtw)

for t ∈ R where w ∈ R2 is such that

(A− λI)w = v.
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here
Looking back to the previous example, our 2× 2 matrix

A =

(
1 −2
3 −4

)
had distinct real eigenvalues λ1 = −1 and λ2 = −2. In that example, we produced
a general solution to the system using the results of a previous exercise. You should
confirm that we could have made the same conclusion for this system (to produce a
general solution) using the first item of the proposition above. The following example
treats the case in which eigenvalues are complex.
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Example 2

Consider the 2× 2 linear system
ẋ = Ax

where

A =

(
1 −1
1 1

)
.

Let’s use the preceding proposition to find a general solution to this system and use
it to solve the initial value problem{

ẋ = Ax, x(0) =

(
1
1

)
.

As the proposition necessitates, we will first find the eigenvalues of A. To this end,
we solve

0 = det(A− λI) = det

(
1− λ −1
1 1− λ

)
= (1− λ)2 − (1)(−1) = λ2 − 2λ+ 2.

Using the quadratic formula, we find

λ = −−2

2
±
√
(−2)2 − 4(1)(2)

2
= 1±

√
−4

2
= 1± i

and so λ = α ± i where α = 1 and β = 1. In view of the proposition, our general
solution will then be int terms of exponentials, sines and cosines. First, however, we
must find eigenvectors associated to these eigenvalues and these will necessarily be
of the form v = a⃗ ± i⃗b – it’s really our job to find a⃗ and b⃗. To this end, consider
λ = 1+ i and let’s find a non-zero v = (v1, v2)

⊺ ∈ ker(A− λI), i.e., v = (v1, v2)
⊺ for

which

(A− λI)v =

((
1 −1
1 1

)
− (1 + i)

(
1 0
0 1

))(
v1
v2

)
=

(
−i −1
1 −i

)(
v1
v2

)
=

(
0
0

)
.

This is equivalent to the linear system{
−iv1 − v2 = 0

v1 − iv2 = 0
.

It should be noted that this system is consistent and underdetermined, i.e., the sec-
ond equation must be a scalar multiple of the first (multiplying the second equation
by −i does the trick). This is by design: we selected our eigenvalue so that the
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ker(A − λI) was non-trivial. By putting v2 = 1, we find that v1 = iv2 = i yields a
non-zero solution to the above system. In fact, all solutions must be scalar multiples
of this one. An eigenvector for A with corresponding eigenvalue λ = α+ iβ = 1 + i
is therefore

v =

(
v1
v2

)
=

(
i
1

)
=

(
0
1

)
+ i

(
1
0

)
= a⃗+ i⃗b

where

a⃗ =

(
0
1

)
and b⃗ =

(
1
0

)
.

As the proposition indicates, which is characteristic of complex eigenvector/eigenvalue
pairs,

a⃗− i⃗b =

(
0
1

)
− i

(
1
0

)
=

(
−i
1

)
is necessarily an eigenvector of A with corresponding eigenvalue λ = α − iβ =
1 − i. This is quite a handy fact because it means that we needn’t find another
eigenvector for the remaining eigenvalue λ = 1 − i, as we would if the eigenvalues
were real. Though you won’t need to do this while solving linear systems with
complex eigenvalues (we actually have all information needed already), let’s verify
this assertion for completeness. We have

A(⃗a−i⃗b) =
(
1 −1
1 1

)(
−i
1

)
=

(
−i− 1
−i+ 1

)
=

(
(1− i)(−i)
(1− i)(1)

)
= (1−i)

(
−i
1

)
= λ(⃗a−i⃗b)

and so a⃗− i⃗b is an eigenvector for A with eigenvalue α− iβ, as was asserted.

Since we have identified α, β, a⃗, and b⃗, we are ready to write down a general solution
to the linear system. In view of the proposition, a general solution is given by

x(t) = c1e
αt(cos(βt)⃗a− sin(βt)⃗b) + c2e

αt(cos(βt)⃗b+ sin(βt)⃗a)

= c1e
t
(
cos(t)⃗a− sin(t)⃗b

)
+ c2e

t
(
cos(t)⃗b+ sin(t)⃗a

)
= c1e

t

(
cos(t)

(
0
1

)
− sin(t)

(
1
0

))
+ c2e

t

(
cos(t)

(
1
0

)
+ sin(t)

(
0
1

))
= c1

(
−et sin(t)
et cos(t)

)
+ c2

(
et cos(t)
et sin(t)

)
=

(
et(c2 cos(t)− c1 sin(t))
et(c1 cos(t) + c2 sin(t))

)
for t ∈ R. I strongly encourage you to verify that this is indeed a solution to the
constant coefficient linear system ẋ = Ax. Taking this for granted, let’s use it to
solve the given initial value problem.

We seek c1 and c2 for which x(0) = (1, 1)⊺. Specifically, we see c1 and c2 for
which

x(0) =

(
e0(c2 cos(0)− c1 sin(0))
e0(c1 cos(0) + c2 sin(0))

)
=

(
1(c2 · 1− c2 · 0)
1(c1 · 1 + c2 · 0)

)
=

(
c1
c2

)
=

(
1
1

)
.

137



Of course, choosing c1 = 1 = c2 gives the desired result and so our unique solution
to the IVP is given by

x(t) =

(
et(cos(t)− sin(t))
et(cos(t) + sin(t))

)
.

Remark 4.3.4. In example above, we went out of our way to verify that a⃗ − i⃗b was an
eigenvector of A with eigenvalue α− iβ and we did this for exposition and completeness.
To solve the given problem, by making use of the proposition, all that was really needed
was α, β, a⃗ and b⃗. Thus, if you encounter complex eigenvalues (e.g., in the following

exercise), it suffices to simply identify α, β, a⃗, and b⃗ and plug them in.

Exercise 48

Find general solutions to the following linear systems:

1.

ẋ(t) = Ax where A =

(
2 −1
−1 2

)
2.

ẋ(t) = Ax where A =

(
0 1
−1 0

)
3.

ẋ(t) = Ax where A =

(
3 −2
4 −1

)
If you’re having fun with these calculations, try to do (but don’t turn in) the case
in which

A =

−1 −1 3
1 1 −1
−1 −1 3

 .

4.4 The geometry of autonomous systems

A first-order autonomous system of ordinary differential equations is an n× n system of
the form

ẋ = F (x)

where F : Rn → Rn. Of course, this is an n × n system whose driving function F
(present in Theorem 4.2.1) does not depend (explicitely) on time. For the autonomous
linear systems studied in this section, we shall make the blanket assumption that F
and its first-order partial derivatives are continuous wherever defined so, in particular,
the hypotheses of Theorem 4.2.1 are met. Generally speaking, autonomous systems of
differential equations model phenomena/games whose laws/rules are fixed in time and the
evolution of their solutions depends only on these fixed laws rules and the starting point
of the system. As we did for scalar autonomous equations, without loss of generality, we
shall focus on systems and their initial value problems whose initial time is t0 = 0.

The characterizations of equilibrium solutions (in terms of eigenvalues) given in class.

Proposition 4.4.1. Consider the autonomous 2× 2 system

ẋ =

(
ẋ
ẏ

)
=

(
F1(x, y)
F2(x, y)

)
= F (x)
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where F : R2 → R2 is differentiable. Assume that x0 = (x0, y0)
⊺ ∈ R2 is an equilibrium

point for the system, i.e.,

F (x0) =

(
F1(x0, y0)
F2(x0, y0)

)
=

(
0
0

)
,

and assume that the derivative matrix of F at x0 = (x0, y0)
⊺,

DF (x0) =

(
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

)
,

is non-singular. Let λ1 and λ2 be the eigenvalues of DF (x0).

1. If λ1 and λ2 are real and negative, then x0 is a sink.

2. If λ1 and λ2 are real and positive, then x0 is a source.

3. If λ1 and λ2 are real and such that λ1 < 0 < λ2, then x0 is a saddle point.

4. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α = 0, then x0 is a center.

5. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α > 0, then x0 is a spiral source.

6. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α < 0, then x0 is a spiral sink.

Given a (possibly non-linear) 2×2 system, you should be able to draw a phase portrait
of the system. You should know how to find equilibrium values and characterize them
as sources, sinks, saddle points, centers, spiral sources and spiral sinks) in line with
Proposition 4.4.2 above. Though I covered this topic in lecture in the last week, you
haven’t been assigned homework on it. Correspondingly below, I’ve included two worked
examples to aid your study.

Example 3

Consider the 2× 2 system

ẋ =

(
ẋ
ẏ

)
=

(
y

y2 − x

)
= F (x, y)

A phase plane for this system is drawn in the figure below (you should try to sketch
this by hand).
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Let’s seek equilibrium points for this system. To this end, we seek (x, y)⊺ such that

F (x, y) =

(
y

y2 − x

)
=

(
0
0

)
.

From this we conclude that y = 0 and y2 − x = 0 which has only one solution
(x, y) = (0, 0). Thus there is only one equilibrium value for the system above at the
point (0, 0). At this point, we compute

DF (0, 0) =

(
∂
∂xy

∂
∂yy

∂
∂x (y

2 − x) ∂
∂y (y

2 − x)

)∣∣∣
(x,y)=(0,0)

=

(
0 1
−1 2y

) ∣∣∣
(x,y)=(0,0)

=

(
0 1
−1 0.

)
The eigenvalues of this matrix DF (0, 0) are easily found to be λ = ±i. Thus we
classify the equilibrium point (0, 0) as a center and so we expect (local) periodic
solutions. This is not surprising given the phase diagram seen above. To confirm
this, I have included a phase portrait illustrated in the following diagram.

Example 4: Duffing’s Equation

Though I gave this example in class, I think it might be useful to illustrate it here.
Consider the following system (associated to Duffing’s Equation)

ẋ =

(
ẋ
ẏ

)
=

(
y

x− x3

)
= F (x, y).

I have plotted a phase diagram for Duffing’s Equation below.
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To find the equilibrium points of this system, we set F (x, y) = (0, 0)⊺, i.e., y = 0
and x − x3 = 0. Thus the equilibrium points (x, y) have y = 0 and x(1 − x2) = 0.
The equation for x has three solutions x = 0 and x = ±1. From this we conclude
that Duffing’s system has three equilibrium points

(x, y) = (0, 0), (x, y) = (1, 0) and (x, y) = (−1, 0).

To classify these points, we compute the derivative of F as follows:

DF (x, y) =

(
∂
∂xy

∂
∂yy

∂
∂x (x− x3) ∂

∂y (x− x3)

)
=

(
0 1

1− 3x2 0

)
.

At (x, y) = (0, 0), we have

DF (0, 0) =

(
0 1
1 0

)
.

The eigenvalues of this matrix are (easily) computed to be λ = ±1. We may therefore
classify (x, y) = (0, 0) as a saddle point. At (x, y) = (1, 0), we have

DF (1, 0) =

(
0 1
−2 0

)
.

The eigenvalues of this matrix are (easily) computed to be λ = ±i
√
2. We may

therefore classify (x, y) = (1, 0) as a center. Similarly at (x, y) = (−1, 0), we have

DF (−1, 0) =

(
0 1
−2 0

)
.

and this also has eigenvalues λ = ±i
√
2. We may therefore classify (x, y) = (−1, 0)

as a center. The behavior of solutions near these equilibrium points are easily seen
in the phase portrait illustrated below.
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Proposition 4.4.2. Consider the autonomous 2× 2 system

ẋ =

(
ẋ
ẏ

)
=

(
F1(x, y)
F2(x, y)

)
= F (x)

where F : R2 → R2 is differentiable. Assume that x0 = (x0, y0)
⊺ ∈ R2 is an equilibrium

point for the system, i.e.,

F (x0) =

(
F1(x0, y0)
F2(x0, y0)

)
=

(
0
0

)
,

and assume that the derivative matrix of F at x0 = (x0, y0)
⊺,

DF (x0) =

(
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

)
,

is non-singular. Let λ1 and λ2 be the eigenvalues of DF (x0).

1. If λ1 and λ2 are real and negative, then x0 is a sink.

2. If λ1 and λ2 are real and positive, then x0 is a source.

3. If λ1 and λ2 are real and such that λ1 < 0 < λ2, then x0 is a saddle point.

4. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α = 0, then x0 is a center.

5. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α > 0, then x0 is a spiral source.

6. If the eigenvalues λ1, λ2 are complex (and necessarily complex-conjugates) α ± iβ
with α < 0, then x0 is a spiral sink.

Exercise 49

Consider the 2× 2 autonomous system(
ẋ
ẏ

)
=

(
x− xy
xy − y

)
.

Find and (using the theorem above) classify the equilibrium points of this system.
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Note that this is a special case of the Lotka-Volterra system.
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Appendix A

Complex Numbers and
Complex-Valued Functions of a
Real Variable

We now move on to a discussion of complex roots and complex exponentials. As we
discussed in class, for a complex number z = a+ ib, we define

ez = ea(cos(b) + i sin(b)). (A.1)

As we did in lecture, you can assume that the following properties hold:

1. For z = a+ ib and w = c+ id,

ez+w = ezew.

2. For z = a+ ib (and so −z = −a− ib = (−a) + i(−b)),

e−z =
1

ez
.

Exercise 50: Warm-up (Don’t turn this exercise in)

In this exercise, we study some basic properties of the complex exponential function.

1. Using only the properties above and (3.23), verify the angle addition formula
for sine and cosine: For α, β ∈ R,

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

and
sin(α+ β) = sin(α) cos(β) + sin(β) cos(α).

Hint: Apply Property 1 in the case that z = 0+ iα and w = 0+ iβ. Note that
two complex numbers are equal if and only if their real and imaginary parts
are equal.
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2. Show that, for any t ∈ R,

cos(t) =
eit + e−it

2
and sin(t) =

eit − e−it

2i
.
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Appendix B

The Chain Rule

In this appendix, we present the multivariate chain rule.
Our first group of exercises will focus on some multivariate calculus and the multivariate
chain rule. To this end we first focus on differentiability in euclidean space. We recall
(from linear algebra) that n-dimensional euclidean space is the (real) vector space

Rn =



x1
x2
...
xn

 : xk ∈ R for k = 1, 2, . . . , n


equipped with the usual component-wise addition and scalar multiplication. Whether
one uses column vectors (as above) or row vectors (x1, x2, . . . , xn) to describe vectors in
Rn is immaterial for most intents and purposes and the convention varies from textbook
to textbook. I have chosen to use column vectors for my description because it makes
easy the matrix calculations we will do in our description of differentiability and the chain
rule. We shall take Rn to be equipped with the euclidean norm ∥ · ∥ defined by

∥x∥ =
√
x21 + x22 + · · ·+ x2n for x =


x1
x2
...
xn

 ∈ Rn.

We are interested in studying functions from n-dimensional euclidean space Rn to m-
dimensional euclidean space Rm. Such a function f : Rn → Rm is given by

f(x) =


f1(x)
f2(x)

...
fm(x)

 for x =


x1
x2
...
xn

 ,

where, for k = 1, 2, . . . ,m, fk is called the k-th component function of f and is a function
from Rn to R. In other words, the components of f are scalar-valued functions.

Example 1
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An example of such a function is the function f : R2 → R2 given by

f

(
x1
x2

)
=

(
sinx2
x21 + x22

)
for x =

(
x1
x2

)
∈ R2.

The components of f , f1 and f2, are given by

f1

(
x1
x2

)
= sin(x2) and f2

(
x1
x2

)
= x21 + x22 for

(
x1
x2

)
∈ R2.

In single-variable calculus, a function is said to be differentiable if the limit of its difference
quotients exists. You probably remember that this definition was equivalent to the given
function being “well approximated” by an affine function near the point of interest. It
is this idea that generalizes to multiple dimensions. In multivariate calculus, a function
is said to be differentiable if it is “well approximated” by a linear map near the point of
interest. The precise definition is as follows:

Definition B.0.1. Let f : Rn → Rm and let x0 ∈ Rn. We say that f is differentiable at
x0 if there is an m× n matrix Df(x0) such that

lim
h→0

∥f(x0 + h)− f(x0)−Df(x0)h∥
∥h∥

= 0. (B.1)

Remark B.0.2. In (B.1), the limit is taken as h ∈ Rn goes to zero which, if you recall from
M122, is a fairly stringent requirement. Moreover, the euclidean norm in the numerator
is the Rm version whereas the euclidean norm in the denominator is the Rn version.

As mentioned above, the above definition should be interpreted thus: When f is differ-
entiable at x0, f can be approximated near x0 by the affine map h 7→ Df(x0)h+ f(x0).
As a consequence of the above definition, it can be shown that there is only one matrix
for which (B.1) holds; we call this matrix Df(x0) the Jacobian

1 matrix and it is given by

Df(x0) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


where, because f is differentiable at x0, the partial derivatives of the components of f ,
∂fk/∂xj for k = 1, 2, . . . ,m and j = 1, 2, . . . , n, necessarily exist at x0. It is important to
note (though it won’t be for us) that the mere existence of partial derivatives at a point
does not guarantee that function be differentiable at that point.

Example 2

Let’s consider f from Example B. I claim that f is differentiable at x0 =

(
1
0

)
. To

see this, we first compute the partial derivatives of f at x0. We have

∂f1
∂x1

(x0) =
∂

∂x1
(sinx2)

∣∣∣(
x1
x2

)
=
(
1
0

) = 0,

1The Jacobian matrix is named after Carl Jacobi (1804-1851).
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∂f1
∂x2

(x0) =
∂

∂x2
(sinx2)

∣∣∣(
x1
x2

)
=
(
1
0

) = cosx2

∣∣∣(
x1
x2

)
=
(
1
0

) = 1,

∂f2
∂x1

(x0) =
∂

∂x1

(
x21 + x22

) ∣∣∣(
x1
x2

)
=
(
1
0

) = 2x1

∣∣∣(
x1
x2

)
=
(
1
0

) = 2

and
∂f2
∂x2

(x0) =
∂

∂x2

(
x21 + x22

) ∣∣∣(
x1
x2

)
=
(
1
0

) = 2x2

∣∣∣(
x1
x2

)
=
(
1
0

) = 0

Therefore

Df(x0) =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

(
0 1
2 0

)
.

Now, given h =

(
h1
h2

)
∈ R2,

f(x0 + h)− f(x0)−Df(x0)h

= f

(
1 + h1
0 + h2

)
− f

(
1
0

)
−
(
0 1
2 0

)(
h1
h2

)
=

(
sinh2

(1 + h1)
2 + h22

)
−
(
0
1

)
−
(
h2
2h1

)
=

(
sinh2

1 + 2h1 + h21 + h22

)
−
(
0
1

)
−
(
h2
2h1

)
=

(
sinh2 − h2
h21 + h22

)
.

Thus, for h =

(
h1
h2

)
̸=
(
0
0

)
,

0 ≤ ∥f(x0 + h)− f(x0)−Df(x0)h∥
∥h∥

=

∥∥∥∥(sinh2 − h2
h21 + h22

)∥∥∥∥∥∥∥∥(h1h2
)∥∥∥∥

=

√
(sinh2 − h2)2 + (h21 + h22)

2√
h21 + h22

≤ | sinh2 − h2|√
h21 + h22

+
|h11 + h22|√
h21 + h22

≤ | sinh2 − h2|
|h2|

+
√
h21 + h22 (B.2)

where we have used the triangle inequality,
√
a2 + b2 ≤ |a| + |b|, and the fact that

dividing by |h2| instead of
√
h21 + h22 can only make the fraction larger. Upon noting

that

lim
θ→0

sin θ − θ

θ
= 0
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(this can be seen using elementary trigonometry or a careful study of the power
series expansion of the sine function), the inequality (B.2) guarantees that

lim
h→0

∥f(x0 + h)− f(x0)−Df(x0)h∥
∥h∥

= 0

by virtue of the squeeze theorem. Hence f is differentiable at x0 =

(
1
0

)
with

Jacobian matrix

Df(x0) = Df

(
1
0

)
=

(
0 1
2 0

)
.

Example 3

Consider the function f : R2 → R3 defined by

f

(
x
y

)
=

 x2

x+ y
1 + y


I claim that f is differentiable at x0 = (1, 0)⊤. To this end, it’s easy to see that the
Jacobian matrix is given by

Df(x0) =

2 0
1 1
0 1

 . (B.3)

We compute

f(x0 + h)− f(x0)−Df(x0)(h) =

 (1 + h1)
2

1 + h1 + h2
1 + h2

−

1
1
1

−

 2h1
h1 + h2
h2


=

 (1 + h1)
2 − 1− 2h1

1 + h1 + h2 − 1− h1 − h2
1 + h2 − 1− h2


=

h210
0


Correspondingly

∥f(x0 + h)− f(x0)−Df(x0)(h)∥ =
√

(h21)
2 + 02 + 02 = h21

and so

lim
h→0

∥f(x0 + h)− f(x0)−D(h)∥
∥h∥

= lim
(h1,h2)⊤→(0,0)⊤

h21√
h21 + h22

.

Noting that

0 ≤ |h1|√
h21 + h22

≤ 1
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we see that

0 ≤ h21√
h21 + h22

= |h1|
|h1|√
h21 + h22

≤ |h1|

for all (h1, h2)
⊤ ̸= (0, 0)⊤. In view of the squeeze theorem, we find that

lim
h→0

∥f(x0 + h)− f(x0)−D(h)∥
∥h∥

= lim
(h1,h2)⊤→(0,0)⊤

h21√
h21 + h22

= 0.

Thus f is differentiable at x0 = (1, 0)⊤ and its derivative is given by (B.3)

Now, it’s your turn.

Exercise 51

Consider the function g : R3 → R2 defined by

g(x) =

(
2x1 + x22

1 + x1 + cosx3

)
for x =

x1x2
x3

 ∈ R3.

1. Compute the Jacobian matrix Dg(x) at an arbitrary point x =

x1x2
x3

.

2. As I have done in the example above, using the definition, show that g is

differentiable at the point x0 =

1
1
0

.

We are now ready to state the multivariate chain rule.

Theorem B.0.3 (The chain rule). Let f : Rn → Rm and g : Rm → Rk and consider the
composition g ◦ f : Rn → Rk defined by

(g ◦ f)(x) = g(f(x)) = g


f1(x)
f2(x)

...
fm(x)

 for x =


x1
x2
...
xn

 ∈ Rn.

If f is differentiable at x0 ∈ Rn and g is differentiable at y0 = f(x0) ∈ Rm, then g ◦ f is
differentiable at x0 where the Jacobian matrix for g ◦ f is given by

D(g ◦ f)(x0) = Dg(y0)Df(x0) (B.4)

where Dg(y0) is the Jacobian matrix for g evaluated at y0 = f(x0) and Df(x0) is the
Jacobian matrix for f evaluated at x0.

Before stating the next exercise, let’s make a couple of notes about the theorem.
First, notice how this parallels the chain rule from your introductory calculus course. In
single-variable calculus, you learned that

(g ◦ f)′(x) = g′(f(x))f ′(x)
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where g and f were functions from R into R. This is precisely the theorem above where
the Jacobian matrices are simply 1 × 1 matrices consisting of ordinary derivatives. In
this case, the matrix multiplication encoded in (B.4) is simply scalar multiplication. The
second note about the theorem (and that which is the most satisfying observation for me)
has to do with the respective dimensions of Jacobian matrices. First note that, because f
is a mapping from Rn to Rm and g is a mapping from Rm to Rk, the composition g ◦ f is
a mapping from Rn to Rk. Correspondingly, the Jacobian matrices Df , Dg and D(g ◦ f)
have dimensions m × n, k ×m and k × n respectively. The only way to multiply these
matrices to get something sensible is to multiply the k ×m matrix by (from the right)
the m × n matrix which yields a k × n matrix. If you compare this with (B.4), this is
precisely what the theorem says!

Exercise 52: Verifying the chain rule

Let f : R2 → R3 and g : R3 → R2 be defined by

f

(
x1
x2

)
=

sinx1
cosx1
x1x2

 for

(
x1
x2

)
∈ R2

and

g

y1y2
y3

 =

(
y21 + y22
y3

)
for

y1y2
y3

 ∈ R3

respectively.

1. How many rows and columns does the Jacobian matrix of f have? Compute

the Jacobian matrix Df(x) at x =

(
x1
x2

)
.

2. How many rows and columns does the Jacobian matrix of g have? Compute

the Jacobian matrix Dg(y) at y =

y1y2
y3

.

3. Evaluate the Jacobian matrix Dg at the element y = f(x) where x =

(
x1
x2

)
and simplify.

4. As it pertains to matrix dimension, confirm that it makes sense to multiply
Dg(f(x)) by (from the right) Df(x)? Using the results above, multiply and
simplify the matrix product.

Dg(f(x))Df(x).

5. Explain why it makes sense to consider the composition g◦f . For which natural
numbers a and b does g ◦ f : Ra → Rb?

6. Compute and simplify

h(x) = (g ◦ f)(x) = (g ◦ f)
(
x1
x2

)
= g

f1(x)f2(x)
f3(x)

 for x =

(
x1
x2

)
.
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7. How many rows and columns does the Jacobian matrix of h have? Compute

the Jacobian matrix Dh(x) at x =

(
x1
x2

)
.

8. By simplifying your results (if necessary), conclude that (B.4) holds.
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Appendix C

Linear Algebra

As so much of our work on linear differential equations makes use of linear algebraic
methods, this appendix is dedicated to give a brief account of some important concepts
and tools from linear algebra. Let’s first recall the definition of a vector space.

Definition C.0.1. Let V be a non-empty set equipped with two operations + and · de-
scribed as follows. Given any v, w ∈ V , the vector sum of v and w, denoted by v + w,
defines another element in V . For any v ∈ V and α ∈ R, the multiplication of v by the
scalar α, denoted by α ·v or αv, defines another element of V . With these two operations,
V is said to be a vector space over R if the following properties are satisfied:

For any v, u, w ∈ V , v + (u+ w) = (v + u) + w (Associativity)

For any v, u ∈ V , v + u = u+ v (Communitivity)

There is an element 0 ∈ V , called the zero vector,
such that 0+ v = v for all v ∈ V . (Existence of zero)

For every v ∈ V , there exists an element −v ∈ V ,
called the additive inverse of v, such that v + (−v) = 0. (Existence of inverse)

For any α, β ∈ R and v ∈ V , α(βv) = (αβ)v (Compatibility of multiplication)

For any α ∈ R and v, u ∈ V , α(u+ v) = αu+ αv (Distributive Property 1)

For any α, β ∈ R and v ∈ V , (α+ β)v = αv + βv. (Distributive Property 2)

You should recall from linear algebra that d-dimensional euclidean space Rd is a vector
space (with the usual component-wise addition and scalar multiplication) and, in fact,
every finite-dimensional vector space V is isomorphic1 to Rd for some natural number d.
In this way, the euclidean spaces Rd represent a very large class of vector spaces. The
vector spaces of interest for us live beyond this category.

In what follows, we denote by I an open sub-interval of the real numbers, i.e., I = (a, b)

1We will discuss isomorphisms shortly.
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where −∞ ≤ a < b ≤ ∞. We define the following spaces of functions:

C0(I) = {f : I → R : f is continuous on I}
C1(I) = {f : I → R : f is once differentiable on I and f ′ is continuous on I}

and

C2(I) = {f : I → R : f is twice differentiable on I and f ′′ is continuous on I}.

Upon recalling that differentiable functions are necessarily continuous, we recognize that
the above function spaces can be equivalently described by

Cn(I) =
{
f ∈ Cn−1(I) : f (n) ∈ C0(I)

}
for n = 1, 2 where the statement that f (n) ∈ C0(I) should be taken to mean that the nth
derivative of f , f (n) = d

dxf
(n−1), exists and is a member of C0(I). In fact, this definition

generalizes for all (positive) natural numbers n, though we will only be interested in
C0(I), C1(I) and C2(I). In light of the above definition, we see that

C2(I) ⊆ C1(I) ⊆ C0(I) (C.1)

where A ⊆ B means that A is a subset of B, i.e., all the members of A are also members
of B. On C0(I) we define addition and scalar multiplication as follows: For f, g ∈ C0(I),
f + g is the function defined by

(f + g)(x) = f(x) + g(x) for x ∈ I.

From Calculus 1, you recall that the sum of two continuous functions is a continuous
function and therefore f + g ∈ C0(I). Similarly, for any α ∈ R and f ∈ C0(I), αf is the
function defined by

(αf)(x) = αf(x) for x ∈ I;

it is necessarily a member of C0(I). These notions of addition and scalar multiplication
are exactly what you think they are: the addition and scalar multiplication of functions.
For example, the functions f and g defined by

f(x) = x2 and g(x) = sinx for x ∈ R

are members of C0(R). Their sum is the function f + g ∈ C0(R) whose rule is

(f + g)(x) = x2 + sinx for x ∈ R.

As we discussed previously, C0(I) is a vector space over R. Though monotonous, checking
this fact is a relatively straightforward task; it relies primarily on the fact that R is itself
a vector space over R. Our next concept is the notion of a subspace.

Definition C.0.2. Let V be a vector space over R and let S be a non-empty subset of
V . The set S is said to be a subspace of V if the following two conditions hold:

1. For any v, u ∈ S, v + u ∈ S (S is closed under addition)

2. For any α ∈ R and v ∈ S, αv ∈ S (S is closed under scalar multiplication)

One recalls that a vector space always contains the so-called trivial subspaces S = V and
S = {0}. That is, the set consisting of only the zero vector is a subspace of V and the
whole of V is always a subspace of itself. You will probably recall from linear algebra
that, equipped with the addition and scalar multiplication from V , a subspace S of V
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can be viewed as a vector space in its own right.

Undoubtedly, you are familiar with subspaces of euclidean space Rd. For instance, the
nontrivial subspaces of R3 are either planes through the origin or lines through the origin.
Similarly in a previous homework, we showed that C2(I) and C1(I) are subspaces of
C0(I). In fact, it can be checked easily that Cn(I) is a subspace of Cm(I) for all n ≥
m ≥ 0. Further, the set of infinitely differentiable functions on I,

C∞(I) =

∞⋂
n=1

Cn(I),

is a subspace of Cm(I) for every m ≥ 0.

We now turn to our focus to linear operators between vector spaces. We recall the
following definition.

Definition C.0.3. Let V and W be vector spaces over R. A linear operator from V to
W is a function T : V →W satisfying the property that, for any α, β ∈ R and v, w ∈ V ,

T (αv + βw) = αT (v) + βT (w).

We note that the sum on the left-hand side is the vector sum in V while the sum on the
right-hand side is the vector sum in W . A linear operator from V to W is said to be an
isomorphism if it is also a bijection (one to one and onto). The vector spaces V and W
are said to be isomorphic if there is an isomorphism from V to W .

We recall from linear algebra that linear operators between euclidean spaces are given by
matrices. For example, if A is an m× n matrix, the function TA : Rn → Rm defined by

TAx = Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 for x =


x1
x2
...
xn

 ∈ Rn

defines a linear transformation from Rn to Rm.

We recall that the kernel of a linear transformation T : V →W is defined to be the set

ker(T ) = {v ∈ V : T (v) = 0}.

In the above definition, 0 is the zero vector of W . Also, the range of T (or image of V
under T ) is defined to be the set

Ran(T ) = T (V ) = {w ∈W : T (v) = w for some v ∈ V }.

As it turns out, these objects tell us quite a lot.

Exercise 53

Let V and W be vector spaces and let T be a linear transformation from V to W .

1. Show that ker(T ) is a subspace of V .

2. Show that Ran(T ) is a subspace of W .

3. Show that T is injective (one-to-one) if and only if ker(T ) = {0} (where 0 is
the zero vector of V ).
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4. Show that T is onto if and only if Ran(T ) =W .

The following exercise continues these ideas further when we have a specific subspace
U of V lying around.

Exercise 54

Let T : V →W be a linear operator from V to W and let U be a subspace of V .

1. Show that T (U) = {w ∈W : T (u) = w for some u ∈ U} is a subspace of W .

2. The restricted map S = T |U is the map S : U → W defined by S(u) = T (u)
whenever u ∈ U . Show that S is a linear operator from U to W .

3. If, additionally, T is one-to-one, show that the restricted map S is also one to
one.

4. If T is one-to-one, show that the restricted map S is an isomorphism from U
onto T (U).

Exercise 55

For any natural number n, consider the space of polynomials Pn(I) consisting of
polynomial functions p : I → R of the form

p(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0

where an, an−1, . . . , a1, a0 are real numbers.

1. Show that Pn(I) is a subspace of C2(I).

2. What is the zero vector in Pn(I)? What are its coefficients?

3. As in the case of euclidean space, polynomials in Pn(I) can be specified by
simply specifying a finite collection of real numbers a0, a1, . . . , an. Therefore,
though it is a subspace of C2(I), Pn(I) “feels” a lot like euclidean space. To
make this precise, lets define a function En : Rn+1 → Pn(I) in the following
way. Given a vector

a =


an
...
a1
a0

 ∈ Rn+1

define the polynomial En(a) by

(En(a))(t) = ant
n + an−1t

n−1 + · · · a1t+ a0.

Show that En is a linear operator from Rn+1 to Pn(I).

4. Show that E is an isomorphism.

5. Conclude that C2(I) has an isomorphic copy of Rn (i.e. a subspace which is
isomorphic to Rn) for each n.
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Theorem C.0.4. A vector space V is of dimension d if and only if there exists an
isomorphism T : V → Rd.

The proof of the preceding theorem is straightforward and appears as standard ma-
terial in linear algebra; I will therefore omit it. The same goes for the following theorem.

Theorem C.0.5. Let V be a d-dimensional vector space. If the vectors v1, v2, . . . , vd ∈ V
(of which there are V elements) are linearly independent, then they form a basis of V .

In our next exercise (which will make use of your results above), we will discuss the
“dimension” of C2(I). It is through this lens that our suspicion that C2(I) is much
much larger than Rn is confirmed. It is a fact that a vector space V is of dimension n
(contains a basis of n elements) if and only if it is isomorphic to Rn, i.e., there is an
isomorphism T : V → Rn. A vector space V is therefore finite dimensional if and only if
it is isomorphic to Rn for some n. A vector space is said to be infinite dimensional if it
is not finite dimensional and hence V is not isomorphic to Rn for any n.

Exercise 56

Let’s assume, to reach a contradiction, that C2(I) is finite dimensional and is
therefore isomorphic to Rn for some n. In this case, there is an isomorphism
T : C2(I) → Rn. By restricting T to the subspace Pn of C2(I), by the penulti-
mate exercise, we obtain an isomorphism S from Pn onto a subspace R = T (Pn) of
Rn. That is, if T : C2(I) → Rn is an isomorphism, S : Pn → R = T (Pn) defined by

S(p) = T (p)

for each p ∈ Pn is an isomorphism from Pn onto R which is necessarily a subspace
of Rn. Using the results of the previous exercise, let En : Rn+1 → Pn be the
isomorphism from Rn+1 to Pn.

1. Using only the fact that S and En are linear maps (you don’t need any special
properties of En), show that the composition S ◦En is defined and is a linear
map from Rn+1 → R.

2. Using the fact that S and En are isomorphisms, conclude that S ◦ En is an
isomorphism from Rn+1 to R.

3. Using your result of the above item, show that such an isomorphism T cannot
exist and conclude that C2(I) is infinite dimensional.
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Appendix D

Refinements of the
Picard-Lindelöff Theorems

Note here
We here prove the Picard-Lindelöff Theorem, a version which is more precise than

that given in the body of this text, from which we can deduce the relevant existence and
uniqueness theorems relevant for linear equations. Consider a n× n system given by

ẋ(t) = F (t,x) (D.1)

where we shall assume that F : I × D → Rn where I is a non-trivial open interval of R
and D is a non-trivial open subset of Rn. Further, we assume that F is continuous on
I ×D. Let’s also consider the initial value problem{

ẋ = F (t,x)

x(t0) = x0

(D.2)

for t0 ∈ I and x0 ∈ D. We recall: x is an analytic solution to (D.2) if there is an open
interval J of I containing t0, i.e., t0 ∈ J ⊆ I, on which x is continuously differentiable
(i.e. x ∈ C1(J : Rn)) and for which

ẋ(t) = F (t,x(t))

for all t ∈ J and x(t0) = x0.

Suppose that x(t) is an analytic solution to (D.2), then

x(t)− x0 = x(t)− x(t0) =

∫ t

t0

ẋ(s) ds =

∫ t

t0

F (s,x(s)) ds

for all t ∈ J by virtue of the fundamental theorem of calculus (Part II). We write this as

x(t) = x0 +

∫ t

t0

F (s,x(s)) ds (D.3)

for t ∈ J ; this is called an integral equation for x. Conversely, suppose it is known that
x ∈ C0(J : Rn) solves (D.3) on J . Trivially, we see that

x(t0) = x0 +

∫ t0

t0

F (s,x(s)) ds = x0 + 0 = x0.
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By virtue of the fact that F is continuous, we appeal to the fundamental theorem of
calculus (Part I) to observe that x is differentiable and

ẋ(t) =
d

dt
x(t) =

d

dt
x0 +

d

dt

∫ t

t0

F (s,x(s)) ds = 0 + F (t,x(t)) = F (t,x(t))

for all t ∈ J . Furthermore, because we have assumed that F is continuous, we can conclude
that ẋ(t) is also continuous. We have therefore proven the following proposition.

Proposition D.0.1. Let J be an interval containing t0. A function x(t) is an analytic
solution to the initial value problem (D.2) on J (necessarily x ∈ C1(J : Rn)) if and only
if x(t) ∈ C0(J : Rn) and satisfies the integral equation (D.3) on J .

Remark D.0.2. The integrals above are vector-valued Riemann integrals. Their construc-
tion is extremely similar to the construction given for real-valued functions and we shall
take for granted all standard results. We note, for a function G : [a, b] → Rn with com-
ponents Gj : [a, b] → R for j = 1, 2, . . . n, all Riemann-integrable on [a, b], the Riemann
integral of G is the element of Rn given by

∫ b

a

G(s) ds =

∫ b

a


G1(s)
G2(s)

...
Gn(s)

 ds =


∫ b

a
G1(s) ds∫ b

a
G2(s) ds

...∫ b

a
Gn(s) ds


Remark D.0.3. In the proposition above, it’s interesting and important to note that
the (single) integral equation (D.3) contains all of the information (both the differential
equation and the initial condition) of the initial value problem (3.1)

Note here
In view of the preceding proposition, we shall focus on solving the integral equation (D.3)
under various conditions on F . The following theorem, while not the strongest possible
result, makes use of a general condition on F , called a local Lipschitz condition, under
which we establish the existence of solutions.

Theorem D.0.4. Let D be a non-empty open subset of Rn, I be an open interval and
F : I ×D → R. Suppose that F is continuous on I ×D and, for each t0 ∈ I and x0 ∈ D,
there are positive constants δ1 and δ2 for and constant L = L(t0, x0) ≥ 0 for which

|F (s,x)− F (s,y)| ≤ L|x− y|

for all s ∈ [t0 − δ1, t0 + δ1] ⊆ I and x,y ∈ R where

R := {x ∈ Rn : |x− x0| ≤ δ2} ⊆ D.

Then, given (t0,x0) ∈ I × D, there exists δ > 0 and x(t) ∈ C1((t0 − δ, t0 + δ) which
satisfies (D.3) for all t0 − δ < t < t0 + δ.

Proof. Our proof used the famous iterative method known as Picard Iteraction. Given
(t0,x0) ∈ I ×D, let δ1, δ2 and L be as given in the statement of the theorem and define

δ = min{δ1, δ2/M}

where
M = sup {|F (t,x)| : |t− t0| ≤ δ1, |x− x0| ≤ δ2} ;
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this M is finite because F is continuous on I ×D and [t0 − δ1, t0 + δ1]×R is a compact
(closed and bounded) subset of I ×D. For t0 − δ ≤ t ≤ t0 + δ, define

x1(t) = x0 +

∫ t

t0

F (s,x0) ds

and, for each n ≥ 1,

xn+1(t) = x0 +

∫ t

t0

F (s,xn(s)) ds.

for n ≥ 1. Observe that, for each t0 − δ ≤ t ≤ t0 + δ,

|x1(t)− x0(t)| =
∣∣∣∣∫ t

t0

F (s,x0) ds

∣∣∣∣ ≤ ∫ t

t0

|F (s,x0)| ds ≤M |t− t0| ≤Mδ ≤ δ2 (D.4)

and therefore x1(t) ∈ R for all t0 − δ ≤ t ≤ t0 + δ. Upon noting that, for each t0 − δ ≤
t ≤ t+ 0 + δ and n ≥ 1,

|xn(t)− x0| ≤
∫ t

t0

|F (s,xn−1(s)| ds

an inductive argument (based one exactly reasoning above) ensures that xn(t) ∈ R for
ever t0 − δ ≤ t ≤ t0 + δ and n ∈ N. We claim that, for each n ≥ 1 and t0 − δ ≤ t ≤ t0 + δ,

|xn(t)− xn−1(t)| ≤M
Ln−1|t− t0|n

n!
≤M

L(n−1)δn

n!
. (D.5)

We have already shown the base case in (D.4). We therefore assume the induction hy-
pothesis for n ≥ 1. If t0 ≤ t ≤ t0 + δ,

|xn+1(t)− xn(t)| =

∫ t

t0

[F (s,xn(s))− F (s,xn−1(s))] ds

≤ L

∫ t

t0

|xn(s)− xn−1(s)| ds

≤ LMLn−1

∫ t

t0

(s− t0)
n

n!
ds =MLn |t− t0|n+1

(n+ 1)!
≤M

Lnδn+1

(n+ 1)!

where we have made use of the fact that (s,xn(s)), (s,xn−1(s)) ∈ [t0 − δ, t0 + δ]×R for
all t0 ≤ s ≤ t0 ≤ t ≤ t0 + δ . If, instead t0 − δ ≤ t ≤ t0, a similar argument (while paying
attention to the sign of (s− t0) yields precisely the same inequality and we have therefore
completed the induction argument and thus proved our claim.

We observe that, for each n ≥ 1 and t0 − δ ≤ t ≤ t0 + δ,

xn(t) =

n∑
k=1

(xk(t)− xk−1(t))

given the telescoping nature of the sum. Consequently, provided we can show that the
series

∞∑
k=1

(xk(t)− xk−1(t))

converges, the sequence of functions {xn} converges and

x(t) = lim
n→∞

xn(t) =

∞∑
k=1

(xk(t)− xk−1(t)) .
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In fact, we will show that this series converges uniformly and absolutely on the interval
[t0−δ, t0+δ] and, because the summands are all continuous (being defined as integrals of
continuous function), the limit x(t) ∈ C0([t0−δ, t0+δ]) by virtue of Theorem 7.12 of [14].
In view of (D.5), the summands xk(t)−xk−1(t) are uniformly bounded in absolute value
by MLk−1δk/k! and since

∞∑
k=1

MLk−1 δ
k

k!
=

{
MeLα/L L > 0

M L = 0

(in particular, the series converges), the comparison test guarantees that the series
∑∞

k=1(xk(t)−
xk−1(t)) converges uniformly on [t0 − δ, t0 + δ]. In other words, the uniform limit

x(t) = lim
n→∞

xn(t)

exists for t ∈ [t0 − δ, t0 + δ] and is necessarily a continuous function having the property
that x(t) ∈ R for ever t0−δ ≤ t ≤ t0+δ. Given that F is jointly continuous and bounded
on [t0 − δ, t0 + δ]×R, it follows that

x(t) = lim
n→∞

xn(t)

= x0(t) + lim
n→∞

∫ t

t0

F (s,xn−1(s)) ds

= x0 +

∫ t

t0

F
(
s, lim

n→∞
xn−1(s)

)
ds

= x0 +

∫ t

t0

F (s,x(s)) ds.

for all t0 − δ ≤ t ≤ t0 + δ.

Note here:
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