Coloring by groups

\[Z/5Z \]

\[2a - b - c = 0 \]

\[c = 2a - b \]

Reflections in dihedral group
Def A coloring of a diagram D by a group G is a function
\[\{ \text{strands} \} \rightarrow G \]

At $a, b, c \in G$

$G = RBR$ by work on dihedral groups: Yes!
To be a coloring by D_5, we need:

$Z/5Z \downarrow$
reflections in D_5

$2 = 2 \cdot 4 - 1 \mod 5$
$= 8 - 1$
$= 7$
$= 2 \mod 5 \checkmark.$
Thm If a diagram D' is obtained from a diagram D by a Reidemeister non-trivial move if D has a coloring by G then so does D'.

$$b = a \cdot a^{-1} = a$$

$$\begin{cases} c = a \cdot b \cdot a^{-1} \Leftrightarrow b = a^{-1}c \cdot c \\ c = a \cdot d \cdot a^{-1} \Leftrightarrow d = a^{-1}c \cdot a \Leftrightarrow b = d \end{cases}$$
\[c = aba^{-1} \]
\[e = bdb^{-1} \]
\[f = aeaa^{-1} \]

From the given equations:
\[f = a b d b^{-1} a^{-1} \]
\[b = a^{-1} ca \]

Using the Reidemeister moves:
\[f = a^{-1} c a d a^{-1} c^{-1} a^{-1} \]
\[= c a d a^{-1} c^{-1} \]

Also check other Reidemeister versions
Note the connection w/ K-colorings:

A diagram D is K-colored $\iff D$ is colored by D_K using reflections.

But using other groups we can get many more types of colorings!

Example: Use the group $\text{PSL}_2 \mathbb{C}$

$$\mathbb{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1 \right\}$$

Bézier curves $(a, b, c, d) = (a, b, -c, -d)$

$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$\begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$

\rightarrow Hyperbolic Geometry