Problems for Review on Taylor Series

For the Final, take another look at Problems 5 through 14
(all Taylor series and power series are centered at \(x = 0 \))

Find the interval of convergence of the series in Problems 1 through 3

1. \(\sum_{n=1}^{\infty} n^3 x^n \)
2. \(\sum_{n=1}^{\infty} \frac{x^n}{n^n} \)
3. \(\sum_{n=1}^{\infty} (-1)^n \frac{3^n x^n}{\sqrt{n}} \)

4. For an arbitrary positive integer \(q \), find the radius of convergence of \(\sum_{n=1}^{\infty} \frac{(n!)^q}{(qn)!} x^n \).

5. Find the Taylor polynomial \(T_3(x) \) of \(f(x) = \frac{1+x}{e^x} \)

6. Find the Taylor polynomial \(T_{10}(x) \) of \(\int \cos(x^2) \, dx \)

7. Find the Taylor polynomial \(T_5(x) \) of \(\sin(x) \cos(x) \)

Find the Taylor series of the functions in Problems 8 through 11

8. \(\frac{x}{1-x^2} \)
9. \(\int \frac{1}{1+x^2} \, dx \)
10. \(\frac{1}{2} (e^{x} + e^{-x}) \)
11. \(\ln(e + x) \)

12. For \(f(x) = \cos(x) \), find the Taylor polynomial \(T_4(x) \). Use your answer to estimate \(\cos(1) \), and find an error bound for your estimate.

13. Estimate \(\int_0^1 e^{-x^2} \, dx \) to within 0.01 (meaning that 0.01 is required to be an error bound).

14. For \(f(x) = \sqrt{1+x} \), find the Taylor polynomial \(T_3(x) \). Use your answer to estimate \(f(-0.5) = \sqrt{0.5} \), and find an error bound for your estimate.

15. Prove that \(1 + x + \frac{1}{2} x^2 + \ldots + \frac{1}{n!} x^n + \ldots = e^x \) for negative \(x \) (in class we discussed the case of a positive \(x \)).

16. Find the Taylor polynomial of \(f(x) = e^{-3x} \) “from first principles”, computing all the \(f^{(n)}(x) \).

17. Find \(\sum_{n=0}^{\infty} (-1)^n \frac{2^{3n+2}}{3^{2n+3}} \)
Review on Series of Numbers:

Take another look at these series from Sections 1.3 and 1.4

1. \(\sum_{n=1}^{\infty} (0.7)^n \)
2. \(\sum_{n=1}^{\infty} \frac{1}{n^{0.7}} \)
3. \(\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^n} \)
4. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}} \)
5. \(\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^e} \)

6. \(\sum_{n=1}^{\infty} \frac{1}{n^{1/2} + n^{3/2}} \)
7. \(\sum_{n=1}^{\infty} \left(\frac{3n+4}{5n+6} \right)^n \)
8. \(\sum_{n=1}^{\infty} \frac{e^n n^3}{n!} \)
9. \(\sum_{n=1}^{\infty} (-1)^n \frac{\cos n}{n^2} \)
10. \(\sum_{n=1}^{\infty} \frac{(n!)^2 + n!}{(2n)!} \)

11. \(\sum_{n=2}^{\infty} \frac{1}{n + (-1)^a \sqrt{n}} \)
12. \(\sum_{n=1}^{\infty} \frac{n^a}{3^n (n!)} \)
13. \(\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n} \right) \)
14. \(\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}} \)

1 Hint: Use the conjugate.

2 Hint: \(\sqrt[n]{n} < 2 \) for all positive integers \(n \); you may use this result without proof.