A Solution to Problem 30

As indicated in p-adic Numbers, there is a solution in D. P. Parent's Exercises in Number Theory. Unfortunately, there are problems with Parent's solution. Here is my attempt to rewrite it.

Fact 0.0.1 For each integer $M>0$ there exists an n such that the partial sum

$$
2+\frac{2^{2}}{2}+\frac{2^{3}}{3}+\frac{2^{4}}{4}+\cdots+\frac{2^{n}}{n}
$$

is divisible by 2^{M}.
Problem 1 Can you give a direct proof of this fact?
First of all, a direct proof is much harder than the p-adic proof. Second, given the result it is fairly easy to estimate M; see problem 175 and its solution.

For an elementary proof, let $M>0$ be given. We want to show that the numerator of

$$
\sum_{n=1}^{N} \frac{2^{n}}{n}
$$

is divisible by 2^{M} when N is large enough. We use congruence notation, so $a \equiv b\left(\bmod 2^{M}\right)$ means that the difference $a-b$ is in $2^{M} \mathbb{Z}_{2}$.

Following Parent's idea, begin from the identity $(1-2)^{2^{k}}=1$ for all $k \geq 1$. Expanding the binomial we get

$$
\sum_{n=0}^{2^{k}}\binom{2^{k}}{n}(-2)^{n}=1
$$

and so, subtracting 1 from both sides,

$$
\sum_{n=1}^{2^{k}}\binom{2^{k}}{n}(-1)^{n} 2^{n}=0
$$

Dividing through by 2^{k} gives

$$
\sum_{n=1}^{2^{k}}\binom{2^{k}}{n}(-1)^{n} \frac{2^{n}}{2^{k}}=0
$$

Since binomial coefficients are integers, the terms with $n \geq M+k$ are certainly divisible by 2^{M}, so

$$
\begin{equation*}
\sum_{n=1}^{k+M-1}\binom{2^{k}}{n}(-1)^{n} \frac{2^{n}}{2^{k}} \equiv 0 \quad\left(\bmod 2^{M}\right) \tag{}
\end{equation*}
$$

The key observation now is that

$$
\frac{1}{2^{k}}\binom{2^{k}}{n}=\frac{1}{2^{k}} \frac{2^{k}!}{n!\left(2^{k}-n\right)!}=\frac{\left(2^{k}-1\right)!}{n!\left(2^{k}-n\right)!}
$$

Now cancel $\left(2^{k}-n\right)$! to get

$$
\frac{1}{2^{k}}\binom{2^{k}}{n}=\frac{\left(2^{k}-1\right)\left(2^{k}-2\right) \cdots\left(2^{k}-n-1\right)}{n!}
$$

If we expand the product in the denominator, most terms will be divisible by 2^{k} so

$$
\frac{1}{2^{k}}\binom{2^{k}}{n}=\frac{2^{k} a(k, n)}{n!}+(-1)^{n-1} \frac{(n-1)!}{n!}=\frac{2^{k}}{n!} a(n, k)+(-1)^{n-1} \frac{1}{n}
$$

where $a(n, k)$ is an integer.
Multiplying by $(-1)^{n} 2^{n}$ to get the general term in $\left(^{*}\right)$,

$$
(-1)^{n} \frac{2^{n}}{2^{k}}\binom{2^{k}}{n}=(-1)^{n} \frac{2^{n+k}}{n!} a(n, k)-\frac{2^{n}}{n}
$$

This is the key trick, since it makes the term $2^{n} / n$ appear. Those, after all, are the ones we are trying to sum.

Plugging this new formula into $\left({ }^{*}\right)$ we get

$$
\sum_{n=1}^{k+M-1}\left((-1)^{n} \frac{2^{n+k}}{n!} a(n, k)-\frac{2^{n}}{n}\right) \equiv 0 \quad\left(\bmod 2^{M}\right)
$$

which, finally, gives us

$$
\sum_{n=1}^{k+M-1} \frac{2^{n}}{n} \equiv \sum_{n=1}^{k+M-1}(-1)^{n} \frac{2^{n+k}}{n!} a(n, k) \quad\left(\bmod 2^{M}\right)
$$

Here M is given but $k \geq 1$ is arbitrary. Since $a(n, k) \in \mathbb{Z}$, it now suffices to choose k such that $2^{n+k} / n$! is divisible by 2^{M}. Since $v_{2}(n!)<n$ (see Lemma 5.7.4, noting that here $p=2$), we have $v_{2}\left(2^{n+k} / n!\right)>k$, so it suffices to choose $k \geq M$, i.e., to sum up to $k+M-1 \geq M+M-1=2 M-1$.

We conclude then, that if $N \geq 2 M-1$ then

$$
\sum_{n=1}^{N} \frac{2^{n}}{n} \equiv 0 \quad\left(\bmod 2^{M}\right)
$$

which proves the claim.

