
Hilbert Basis Theorem
& Ideal-Variety Correspondence

MA434: Algebraic Geometry — Lecture: March 09, 2020
Presenters: Christopher & Lily

Scribe: Huan Q. Bui

Here is a summary of what we did in class on Mar 09, 2020. Christopher
and Lily covered sections 3.3 to 3.6 in Reid’s. We discussed the Hilbert Basis
Theorem, followed by some corollaries and examples, and the correspon-
dences V and I . We ended the lecture with some tidbits by Fernando on the
Hilbert basis theorem and, of course, the midterm exam (good luck ,).

1 Review
Last time, we introduced the concept of Noetherian rings. Today, we will be
using the following (equivalent) useful facts about Noetherian rings. Let a
Noetherian ring A be given, then

• ∀I idl⊂ A, I is finitely generated (or f.g., for short).

• Every ascending chain

I ⊂ ⋅ ⋅ ⋅ ⊂ Im ⊂ . . .

with Ii
idl⊂ A eventually terminates, with IN = IN+1 = . . . for some

N ∈ N. This is called the ascending chain condition, or a.c.c..

2 Hilbert Basis Theorem
Theorem 2.1.

Ring A is Noetherian Ô⇒ A[X] is Noetherian.

Proof. Let a Noetherian ring A be given. To show: every J idl⊂ A[X], where
A[X] is the ring of polynomials whose coefficients are elements of A, is f.g..
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Let any J idl⊂ A[X] be given. We consider Jn , the subset of A that contains
the coefficients of leading terms of degree-n polynomials in J :

Jn = {a ∈ A ∣∃ f = aXn + bn−1Xn−1 + ⋅ ⋅ ⋅ + b0 ∈ J } .

Now, Jn
idl⊂ A, because:

• Because J is an ideal, for any f1 = aXn + . . . and f2 = bXn + ⋅ ⋅ ⋅ ∈ J , we
have f1 + f2 = (a + b)Xn + ⋅ ⋅ ⋅ ∈ J . And so we see that with a , b ∈ Jn ,
(a + b) ∈ Jn Ô⇒ Jn is closed under (+).

• Consider a ∈ A and j ∈ Jn . We can see that a j is going to be the
coefficient for a leading term for some degree-n polynomial in J . So,
a j ∈ Jn Ô⇒ Jn absorbs products.

We can also see that Jn ⊂ Jn+1, because for any degree-n polynomial f ∈ J
with leading coefficient j ∈ Jn , the degree-(n + 1) polynomial X f also has
leading coefficient j ∈ Jn+1.

So, because A is Noetherian, Jn
idl⊂ A, and Jn ⊂ Jn+1, a.c.c. tells us that there is

some N ∈ N for which

JN = JN+1 = . . .
The goal now is to build a set of generators for J . If we can somehow show
there are finitely many generators for J then we’re done. Here’s how: each
Ji

idl⊂ A is f.g., for each i ≤ N , we let (ai1, . . . , am(i)) generate Ji . For each aik ,
we let fik = aikX i+⋅ ⋅ ⋅ ∈ J be an element of degree i and leading coefficient aik .

Intuitively, the set

{ fik ∣ i = 0, 1, . . . ,N ; k = 1, . . . ,m(i)}
generates J . We will see this explicitly: consider some g ∈ J with deg g = γ,
then the leading term of g is bXγ with b ∈ Jγ. Now, Jγ is an ideal f.g. by the
aik’s, so I can write b as a combination of these:

b =∑
k

cγ′k aγ′k

with γ′ = γ if γ ≤ N , otherwise γ′ = N . (This has to do with the fact that
the ascending chain terminates at JN - we won’t worry about this too much.)
From here, we consider this polynomial in J :

g1 = g − X(γ−γ
′
)∑

k
cγ′k fγ′k .
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By how we define γ′, there is no negative degree in g1. Because the leading
coefficient of each fγ′ j is aγ′ j (by construction), we can readily check that the
term of degree γ is zero. And so,

deg g1 ≤ deg g − 1.

By induction, we will eventually get to some gη = 0 This means that we
will eventually be able to write g as a combination of the fik’s. So, J is f.g.
Ô⇒ A[X] is Noetherian.

◻

Here’s a little “summary” of the proof: We want to show any J idl⊂ A is
f.g., so we look at

A[X] idl⊃ J
collect leading coefs...
ÐÐÐÐÐÐÐÐÐÐÐ→ a = combo of ai1, . . . , aim(i) ∈ Ji

idl⊂ A.

Fromhere, look at g ∈ J with deg g = γ. Since Jγ
idl⊂ A, the leading coefficient

can be written as ∑ cγ′k aγ′k where the aγ′k’s generate Jγ. So, with each fγ′k
having aγ′k as leading coef.,

deg [g −∑
k

cγ′k aγ′kXγ−γ′ fγ′k] ≤ γ − 1.

By induction, we eventually get to the zero polynomial, which implies we
can write g as a combination of the fik’s. This says J is f.g., and so A[X] is
Noetherian.
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2.1 Some consequences
Any field k is Noetherian (l.t.r.). So, we have that

k is a field Ô⇒ k[X1] is Noetherian.

The proof is a direct application of Hilbert Basis Theorem.

But why stop at a single variable X1 when we have a new Noetherian
ring, namely k[X1]? Applying Hilbert’s Basis Theorem again to k[X1] we
have that k[X1][X2] ≡ k[X1,X2] is also Noetherian. Here k[X1][X2] is the
ring of polynomials in X2 whose coefficients are (polynomial) elements in
k[X1]. It makes senses (and is true!) that k[X1][X2] = k[X1,X2].

Of course we can do this finitely many times to get a more general result:

k is a field Ô⇒ k[X1, . . . ,Xn] is Noetherian.

Reid generalizes this a bit more in a corollary:

k is a field Ô⇒ a finitely generated k − algebra is Noetherian

Afinitelygenerated k-algebra is a ringof the formA = k[a1, . . . , an], which
is generated (as a ring) by k and a1, . . . , an . Every such ring is isomorphic to
a quotient of the polynomial ring, i.e.,

A ≅ k[X1, . . . ,Xn]/I .

From our discussion above we already know that k[X1, . . . ,Xn] is Noethe-
rian, and so k[X1, . . . ,Xn]/I is also Noetherian by Proposition 3.2(i), which
I presented in the previous lecture ,.
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3 The correspondence V
Definition 3.1. Let k be a field and A = k[X1, . . . ,Xn]. Given a polynomial
f (X1, . . . ,Xn) ∈ A and a point P = (a1, . . . , an) ∈ An

k ≡ kn (think of this as just
a k-tuple), we define the correspondence:

{J
idl⊂ A} VÐ→ {subsets X ∈ An

k }

by

J → V(J) = {P ∈ An
k ∣ f (P) = 0∀ f ∈ J} ,

where the notation f (P) means “evaluating f at P.”

Definition 3.2. When V(I) = X ⊂ An
k for some I, then X is an algebraic set.

Proposition-Definition 3.3. The correspondence V satisfies the following
formal properties:

1. V({0}) = An
k ; V(A) = ∅.

2. I ⊂ J Ô⇒ V(I) ⊃ V(J). Or, V “reverses inclusion.”

3. V(I1 ∩ I2) = V(I1) ∪ V(I2). Or, to make a bigger V(I), intersect the I’s!

4. V (∑λ∈Λ Iλ) = ⋂λ∈Λ V(Iλ).

Proof:

1. By the definition of V(J), we see that if J = {0} then V(J) is the set of
points P at which f (P) = 0 for all f ∈ J. But J = {0}, so f is identically
zero. So, any P ∈ An

k is in V(0). When J is all of A, no point P ∈ An
k

makes every f ∈ J vanish because there are constant functions in J.

2. If I ⊂ J then if a point P ∈ An
k is such that f (P) = 0∀ f ∈ J then

f (P) = 0∀ f ∈ I. So V(J) ⊂ V(I).

3. • (⊃) Evidently, V(I) ⊂ V(I ∩ J) because I ∩ J ⊂ I. Similarly, V(J) ⊂
V(I ∩ J) (by (2)). So, V(I) ∪ V(J) ⊂ V(I ∩ J).

• (⊂) Assume P ∈ V(I ∩ J). If P ∉ V(I) ∪ V(J) then there is some
f ∈ I and g ∈ J such that f (P) ≠ 0 and g(P) ≠ 0. But this means
f ○ g(P) ≠ 0, which implies P ∉ V(I ∩ J). This is a contradiction.

With these items, we’re done with the proof.
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4. • (⊂) First, let us write

L ≡ ∑
λ∈Λ

Iλ = {f = ∑
λ∈Λ

fλ ∣ fλ ∈ Iλ} .

L is an ideal (l.t.r.). For any point P ∈ V(L), f(P) = 0∀ f ∈ L, by
definition. In particular, if we look at fλ where L ∋ f = fλ ∈ Iλ,
then fλ(P) = 0. This holds for all fλ ∈ Iλ and for all λ, so the point
P belongs to every V(Iλ), i.e., V(L) ⊂ ⋂λ∈Λ V(Iλ).

• (⊃) Suppose P ∈ ⋂λΛ V(Iλ), then for any λ ∈ Λ, f (P) = 0∀ f ∈ Iλ.
This tells us that any f ∈ L (which is some combination of the fλ’s)
vanishes atP aswell. ThismeansP ∈ V(L). So,⋂λ∈Λ V(Iλ) ⊂ V(L).

With these items, we’re done with the proof.

◻
Side note: Reid briefly mentions that from these propositions-definitions

the algebraic subsets ofAn
k form the closed sets of a topology onAn

k called the
Zariski topology. I’m just mentioning the name here, just in case it shows up
in a different context. Reid says the Zariski topology “might cause trouble
to some students”, adding: “[...]since it is only being used as a language,
and has almost no context, the difficulty is likely to be psychological rather
than technical.”
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4 The correspondence I
Definition 4.1. As a kind of inverse to V there is a correspondence

{J
idl⊂ A} I←Ð {subsets X ∈ An

k }

defined by

I(X) = { f ∈ A ∣ f (P) = 0∀P ∈ X}← X.

Basic idea: I takes a subset X to the ideal of functions vanishing on it.

Proposition 3.2.

1. I(An
k ) = {0}; I(∅) = A.

2. X ⊂ Y Ô⇒ I(X) ⊃ I(Y). (“reverses inclusion”)

3. For any X ⊂ An
k , X ⊂ V(I(X)), with equality ⇐⇒ X is an algebraic set.

4. For J ⊂ A, J ⊂ I(V(J)), this inclusion may well be strict.

Proof:

1. By definition, I(An
k ) is the set of polynomials in A that vanish at all

points P ∈ An
k . This holds only if f = 0, i.e., I(An

k ) = {0}. I’ll get back to
the second sub-item after proving item (4).

2. This one is similar to second item of Proposition 3.3. Suppose X ⊂ Y ⊂
An

k . Then any f ∈ A such that f (P) = 0,∀P ∈ Y necessarily vanishes at
all P ∈ X as well. This means f ∈ I(X). So I(Y) ⊂ I(X).

3. (tautology + condition for equality) If I(X) is the set of f ∈ A such that
f (P) = 0∀P ∈ X, then evidently ∀P ∈ X, f (P) = 0, i.e., X ∈ V(I(X)).
Therefore, X ⊂ V(I(X)). If X = V(I(X)) then X has the form V(ideal).
So X is an algebraic set, by definition 3.2. If X = V(I0) is an algebraic
set, then I(X) contains at least I0, and so V(I(X)) ⊂ V(I0) = X (by (2)).
So, equality occurs exactly when X is an algebraic subset of An

k .

4. (tautology) Staying with the definition: I(V(J)) is the set of functions
vanishing at all points ofV(J), and so for anypoint ofV(J), any function
of J vanishes at it. So J ⊂ I(V(J)).
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5. As promised, we look at the statement I(∅) = A of item (1) again. By
replacing J in item (4) by A, we get A ⊂ I(V(A)). But I(. . . ) ⊂ A and
V(A) = ∅ (by Proposition 3.3(1)), so we have I(∅) = A.

◻

Example 3.3. Here is an Fernando’s example to illustrate the inclusion in
item (3). Let X = {(x , 0) ∣ x > 0}, i.e. X is the positive x-axis. Then I(X) is
the ideal generated by y of functions that vanish on X. But of course any
function f ∈ I(X) will also vanish on the negative x-axis, and so V(I(X)) is
the entire x-axis. We see that X ⊂ V(I(X)).

◻
The following examples illustrate how the inclusion in (3) may be strict.

Example 3.4. This is Example 1 from Reid’s. Suppose k is not algebraically
closed, and let f ∈ k[X] be a nonconstant polynomial not having root in k
(because k is not algebraically closed). The ideal J = ⟨ f ⟩ ⊂ k[X]. Since 1 ∉ J
(because any f ∈ J is nonconstant), we have that J ≠ k[X]. But

V(J) = {P ∈ An=1
k ∣ f (P) = 0∀ f ∈ J} = ∅,

(because any f has no root in k). So, I(V(J)) = k[X], by item (1). Hence we
see that J ⊊ I(V(X)).

◻
Example 3.5. For any f ∈ k[X1, . . . ,Xn] and a ≥ 2, f a(P) = 0 ⇐⇒ f (P) = 0
(l.t.r.). Therefore, V(⟨ f a⟩) = V(⟨ f ⟩). Further, f ∈ V(I(⟨ f a⟩)), but usually
f ∉ ⟨ f a⟩. So, we see that ⟨ f ⟩ ⊊ V(I(⟨ f a⟩)), usually.

◻
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5 Addendum: “Hilbert Basis Theorem” origins
This article discusses the theory of invariants, from which the Hilbert Basis
Theorem originated. The Hilbert Basis Theorem generalizes Paul Gordan’s
results on invariants. Gordan was the person who famously said, about
Hilbert’s proof of the theorem, “This is not mathematics; this is theology!”
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