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Section 3.1

Proposition-Definition

The following conditions on ring A are equivalent

(1) Every ideal I ⊂ A is finitely generated.

(2) Every ascending chain of ideals eventually stabilizes.

(3) Every non-empty set of ideals of A has a maximal element.

If they hold, A is a Noetherian Ring.

Definitions

Finitely generated: Ideal I ⊂ A is finitely generated if ∃ a1, ...ak ∈ I such that

I ={ α1a1, ...αkak | αi ∈ A }.

Stabilizes: An ascending chain of ideals I1 ⊂ I2... ⊂ IM stabilizes if ∃ M such

that IM = IM+1 = IM+2....
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Proof

To prove all three definitions are equivalent, we will prove (1) =⇒ (2), (2) =⇒

(3), and (3) =⇒ (1).

(1) =⇒ (2) Proof

Assume I ⊂ A is finitely generated.

To prove: I1 ⊂ I2... ⊂ IM = IM+1 = IM+2...

Consider an ascending chain I1 ⊂ I2... ∪ Ij = I where I ⊂ A.

Because I is finitely generated, it has generators [f1, ...fk].

Each fi is an element of some Ij. Notice, for example, if f7 ∈ I5, then f5 ∈

I6 ⊂ I7... ⊂ IM . Since there are finitely many generators, ∃ IM such that

[f1, ...fk] ∈ IM . Then I = IM and the chain of ideals I1 ⊂ I2... ⊂ IM stabilizes

at IM .

(2) =⇒ (3) Proof

Assume an ascending chain of ideals in A stabilizes.

I1 ⊂ I2... ⊂ IM = IM+1 = IM+2...

To prove: Every non-empty set of ideals in A has a maximal element

There are two ways to prove this:

1st way: Zorn’s Lemma- This makes the proof trivial so we won’t do this.

2nd way: Create an ascending chain of ideals in A.

Ascending chain: I1 ⊂ I2... ⊂ Ij If Ij is not maximal, then ∃ Ij+1 such that

Ij ⊂ Ij+1. Keep applying this logic until you eventually reach the maximal

ideal IM where IM = IM+1 = IM+2....

2



(3) =⇒ (1) Proof

Assume every non-empty set of ideals in A has a maximal elemnet.

To prove: Every I ⊂ A is finitely generated.

Let’s consider the set F = { J ⊂ I | J finitely generated subideal}

F has a maximal element Jo. There are two possible cases:

Case 1: Jo = I

Since Jo is finitely generated, I must be finitely generated.

Case 2: Jo 6= I

Then ∃ x ∈ I such that x /∈ Jo. Then ¡ Jo, x¿ is larger than Jo, which is a

contradiction.

∴ A is a Noetherian ring.

Section 3.2

Propositions

(i) Suppose that R is Noetherian, I ⊂ R is an ideal, then R/I is Noetherian.

(ii) Suppose A is Noetherian and 0 /∈ S ⊂ A, then B = A[S−1] = { a
s
| a ∈ A,

s = 1 or products of si ∈ S}

Proof of (i)

Let R be Noetherian, I ⊂ R be an ideal.

To prove: ∀ ideal B̄ ⊂ R/I, B̄ is finitely generated (This is Proposition-

Defnitiion (1) from Section 3.1).

R/I = { r + I | r ∈ R}

Since B̄ ⊂ R/I, ∀ b+I ∈ B, ∀ r+I ∈ R/I, br+I ∈ B̄ where B = { b ∈ R | b+I
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∈ B̄}. B̄ has the form B/I where I ⊂ B ⊂ R and B is an ideal.

=⇒ B̄ is finitely generated.

Proof of (ii)

Assume A is Noetherian and 0 /∈ S ⊂ A.

To prove: ∀IB ⊂ B is an ideal, IB is finitely generated. The strategy is to

write B in terms of the ideals in A.

Look at IB ∩ A. IB ∩ A is an ideal in A. IB ∩ A absorbs products in A since

IB does and A does. Notice ae ∈ IB ∩ A since a ∈ A ⊂ B and e ∈ IB ∩ A.

A[S−1] = B

We put [S−1] next to the intersection and claim that this set is an ideal in B.

(IB ∩ A) [S−1] = { e
s
| e ∈ IB ∩ A ⊂ A, s = 1 or products of si ∈ S }

This is an ideal in B. If we look at

e

s
+
e′

s′
=
es′ + e′s

ss′

the denominator is a product of elements in S and e’s, es’ ∈ IB ∩ A because

e’ ∈ IB ∩ A and s ∈ S ⊂ A.

We look at b ∈ A ⊂ B and e ∈ IB ∩ A.

b

s
+
e

s
=
be

s

where be
s
∈ IB ∩ A since b ∈ A ⊂ B and e ∈ IB ∩ A.

Then IB ∩ A ⊂ B an is an ideal.

Claim: (IB ∩ A) [S−1] = IB

Proof of claim: We will prove (IB ∩ A) [S−1] ⊂ IB and IB ⊂ (IB ∩ A)[S−1].

Proof of IB ⊂ (IB ∩ A)[S−1]:

Let x ∈ IB. x = y
s

where y ∈ A ⊂ B and s is the same as defined above.

x = y
s

= xs
s

where xs ∈ A.
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Notice x ∈ IB and s ∈ S ⊂ A ⊂ B =⇒ xs
s
∈ IB ∩ A) [S−1].

Proof of (IB ∩ A)[S−1] ⊂ IB is trivial. =⇒ (IB ∩ A) [S−1] = IB and IB is

finitely generated =⇒ B is Noetherian.

Now let’s see what happens when we do this the other way. We start with an

ideal in A, hit it with S−1, and then intersect back with A.

I ⊂ A→ I[S−1]→ I[S−1] ∩ A

where

A→ A[S−1]

We won’t answer what happens when we try the proposition the other way.

In the claim R Noetherian =⇒ R/I Noetherian, we did not use anything

about R being a domain or not.

In the claim A Noetherian =⇒ A[S−1], our definitions do not work if A is

not a domain.

Let’s look at a new example. Suppose we have the affine plane. If you have

a polynomial in two variables on the affine plane, you can use it to make a

function. We want functions that we can compute everywhere but not at the

origin. There are quotients of polynomials that can be computed everywhere

outside of the origin, like 1
x
.

f ∈ k[x, y] ⊂ k(x, y)

Let’s look at the set of rational functions for this.

R = { g ∈ k(x, y) | g defines a function on A2 - (0, 0)}.

We’re looking at rational functions where the denominator is nonzero at (0,

0). Let’s allow these functions to be divided by any power of x.

R = { f
xn
| f ∈ k(x, y)}
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These are functions that make sense off the y axis defined by x = 0.

In a sense, localization is moving away from certain points. We can also

do the opposite and find functions that make sense on (0, 0) and some neigh-

borhood but not in the whole plane.

R = {f
g
| g(0, 0) 6= 0}

Often localizations are much nicer than the ring itself. Here’s an example in

Z:

Z ⊂ Z(p) = {a
b
| p - b} ⊂ Q

where p is a prime. We know that there is a function from Z → Z/pZ. The

denominator of the set contains that functions that are invertible in Z/pZ so

there is a function Z(p) → Z/pZ where you send 1
b

to tis inverse in Z/pZ.

This is the largest subring of Q where such a function exists. The ideals in Z

are all generated by a single integer. How many of these are still interesting

ideals in Z(p)? If the ideals are generated by integers not divisible by p, then

they are units, so we get the entire ring. The only elements that survive are

ideals generated by powers of p.
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