
March 4th 2020
MA484 Problem Day 2

1 Problem 2

Remember that an ideal in R is a subset I ⊂ R which contains 0, is closed under
addition, and “absorbs products,” that is, if r ∈ I and x ∈ R then rx ∈ I. The
easiest ideals are the principal ideals, which are just the set of all multiples of
some fixed element a ∈ R:

I = Ra = (a) = {ra | r ∈ R}

The next-easiest ideals are the finitely-generated ones, where

I = {r1a1 + r2a2 + + rkak | ri ∈ R}

for some finite set of a1, a2, ..., an ∈ R. Let k be a field and let R = k[x]. Show
that any ideal I ⊂ R is principal. (If I = {0}, find an element a ∈ I of minimal
degree and prove that I = Ra.) A domain in which every ideal is principal is
called a principal ideal domain, or PID. The most important examples are Z
and k[x] when k is a field.

Proof:

To show that any ideal I ⊂ R is principal, we must show that it is generated
by one element in I. We start by considering if I is the zero ideal.

If I = {0}, then we have that I = {ar | r ∈ R} and a = 0. This shows that
this is a principal ideal in R.

If I is non-zero, we want to pick a polynomial g(x) ∈ I of lowest degree, and
want to show that the ideal I is the ideal generated by g(x). This is to say

I = < g(x) >

Our next step is to take another element of f(x) ∈ I (which is a polynomial)
and divide it by our polynomial of minimal degree, g(x). Using the division
algorithm for polynomials, we have

f(x) = g(x)q(x) + r(x)

where g(x), q(x), r(x) are all polynomials in I, and degree r(x) < g(x)
Rearranging our equation, we see that

r(x) = f(x)− g(x)q(x)
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and f(x) ∈ I, and g(x)q(x) ∈ I because g(x) ∈ I. Thus, we see that r(x) ∈ I.
Now we see that because r(x) has degree strictly less than g(x), it must be that
r(x) is the zero polynomial because we defined g(x) to have minimal degree.
This shows that g(x) generates all elements of I, and thus I is a principal ideal,
which concludes the proof.

2 Problem 3

An ideal I ⊂ R is called maximal if I = R and there are no ideals “between” I
and R: if J is an ideal and I ⊂ J ⊂ R then either I = J or I = R. Show that
I is maximal if and only if R/I is a field.

Proof:

This is an if and only if so we must verify two directions. We start with the
forward direction.

(⇒)

Assume that I is maximal. We want to show that R/I is a field. To show
that R/I is a field, we want to show that it has multiplicative inverses.

Let b+ I ∈ R/I be an arbitrary element of R/I, where b ∈ R. Assume that
this element is non-zero, because zero has no multiplicative inverse. Because
b+ I 6= 0, we know that b 6∈ I. We now create the set

B = {br + a | r ∈ R, a ∈ I}

Claims about B: We now claim that this set B is an ideal of R that prop-
erly contains I. Additionally, we also claim that B = R, and 1 ∈ B.

B contains I because if we let r = 0, then all elements of B look like elements
of I. B properly contains I because b ∈ B and b 6∈ I. Additionally, B is an ideal
because adding any two elements in B gives an element in B, and it absorbs
products.

We now want to show that our arbitrary element b + I has an inverse.
Because I is maximal, and B properly contains I, we now know that B = R.
In particular, 1 ∈ B. Thus, we can write

1 = bc+ a c ∈ R, a ∈ I

So in R/I, we have
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1 + I = bc+ a+ I

But I absorbs a because a ∈ I. So we are left with

1 + I = bc+ I = (b+ I)(c+ I)

Notice that 1 + I is the identity element of R/I, so thus we have shown that
our arbitrary element of R/I has a multiplicative inverse! Thus, R/I is a field
and this direction of the implication is verified.

(⇐)

Assume that R/I is a field. We want to show that I is maximal. We once
again consider our set B that we defined above. We have already shown that B
properly contains I. Our new task is to now show that B = R.

We once again consider our arbitrary element b+I ∈ R/I where b ∈ B, b 6∈ I.
Because b+ I ∈ R/I, it has a multiplicative inverse, let us call it c+ I. Now we
multiply the two to get the identity in R/I.

(b+ I)(c+ I) = (bc+ I) = 1 + I

Thus, we can conclude that bc− 1 ∈ I via rearranging and using the proper-
ties of ideals. Our new goal is to show that 1 ∈ B, because if this is true, then
B is the whole ring R. Because bc− 1 ∈ I, we have that

1− bc+ (bc) = 1 ∈ B

Thus, we now have that 1 ∈ B, so it must be that B = R. This shows that
I is maximal and the proof is complete. We have now verified both directions
of the implication, and thus the if and only if holds.

3 Problem 4

An ideal I ⊂ R is called prime if ab ∈ I implies that either a ∈ I or b ∈ I. Show
that I is prime if and only if R/I is a domain.

Proof:

Because this is an if and only if statement, we must verify both directions.
We start with the forward direction.

(⇒)

3



Assume that I is a prime ideal. We want to show that R/I is a domain.

Because I is a prime ideal, given ab ∈ I, it follows that a ∈ I or b ∈ I.
We now want to show that if we multiply any two elements in R/I and they
produce the zero element in R/I, that one of the two things we multiplied with
was the zero element in R/I. Consider

0 = (x+ I)(y + I) = xy + I x, y ∈ R
Note that the zero element in R/I is I because it has the form r+ I, where

r ∈ R is 0. Because xy + I = 0 in R/I, it must be that xy ∈ I. We can now
use the fact that I is a prime ideal, which implies that

x ∈ I or y ∈ I
Without loss of generality, let’s assume x ∈ I. Thus, it must be that

(x + I) = I which is the zero element of R/I. Thus, we have shown that
one of the two things we multiplied in R/I to get the zero element was the zero
element, and thus R/I has no zero divisors. Thus, R/I is a domain and this
direction of the implication is verified.

(⇐)

Assume that R/I is a domain. We want to show that I is a prime ideal.
Here, we will essentially do the forward implication in reverse to get this direc-
tion.

Consider the product of elements in R/I that produces the zero element in
R/I. We will once again use x, y ∈ R such that

0 = (x+ I)(y + I) = xy + I

Because R/I is a domain, it must be that either (x+ I) = 0, or (y+ I) = 0.
For either of these to be true, it must be that x or y is an element of I. Thus, we
conclude that either x ∈ I or y ∈ I. Because xy + I = 0, we can also conclude
that xy ∈ I. Thus, we have that

if xy ∈ I, then either x ∈ I or y ∈ I
This is exactly the definition of a prime ideal, so thus, I is a prime ideal. We

have verified both direction, so the if and only if holds and the proof is complete.

4 Problem 5

Show that any maximal ideal is prime. Find an easy example of a prime ideal
that is not maximal.
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Proof:

This one is quite quick. By Problem 3, we know

I is maximal ideal in R ⇔ R/I is a field

and we also know from Problem 4 that

I is a prime ideal in R ⇔ R/I is a domain

Let M be a maximal ideal in a ring R. By Problem 3, we know that R/M
is a field. By Problem 4, we know that because a field is an integral domain,
that M is a prime ideal of R. Thus, the proof is complete.

To find an example of a prime ideal that is not maximal, we want to look for
a domain that is not a field because that is the link we established to prove that
maximal ideals are prime ideals. Consider the zero ideal in a domain. Unless
the domain is already a field, this ideal will not be maximal because there will
be other elements in the ring R. Note that the zero ideal in a domain is prime,
so thus, we have found a prime ideal in a ring R that is not maximal.

5 Problem 8

Suppose R is Noetherian, a ∈ R, a = 0, a 6∈ Rx (i.e. a is not a unit). Show that
there exist irreducibles π1, π2, ..., πk such that a = π1π2...πk. In other words,
factorizations exist.

Proof:

We will do this by contradiction. Suppose for a contradiction that a cannot
be written as the product of irreducibles. Let us define the set of ideals

S = {aR | a cannot be written as a product of irreducibles}

By the property of Noetherian rings, S has a maximal element. Let us call
this maximal element sR. Let us now say that

s = xy

and neither x nor y is a unit. Note that s must factor because it is not
irreducible. Because x, y are not units, the ideals

xR, yR ( sR

Because xy = s, it follows that xR and yR are not in S. Thus, x and y
can be written as the product of irreducibles (i.e. they factor). So we can write
them as
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x = π1π2...πn(u)

y = ρ1ρ2...ρk(v)

Where u and v are units in R. Thus, we can write S as

s = xy = x = π1π2...πnρ1ρ2...ρk(uv)

and now we have a contradiction because we assumed s could not be written
as the product of irreducibles. Thus, it must be that in Noetherian rings, all
non-zero, non-unit elements can be written as the product of irreducibles in the
ring, and the proof is complete.

6 Problem 11

Let R = Z[
√
−5] = {a + b

√
−5 | a, b ∈ Z}. R is known to be a Noetherian do-

main. Let N : R → Z be the function N(a+ b
√
−5) = a2 + 5b2. Since this is

just the square of the complex absolute value, we know that Nαβ) = N(α)N(β).
(Of course, it’s easy to check that by hand as well.)

a. Show that u is a unit in R if and only if N(u) = 1.

b. Show that no element of R has norm 3.

c. Show that no element of R has norm 7.

d. Show that 3, 7, (1+ 2
√
−5), and (1 - 2

√
−5) are all irreducible in R.

e. Check that 3 × 7 = (1 + 2
√
−5)(1 - 2

√
−5).

f. What does that tell you?

Proof:

This one has a lot of parts.

(a):

(⇒)

Assume that u is a unit in R. We want to show that N(u) = 1. Because u
is a unit, we know that

uu−1 = 1
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If we now apply our function N to uu−1, by the properties of N , we get

N(uu−1) = N(u)N(u−1) = 1

This shows us that N(u) and N(u−1) must be factors of 1. The only factors
of 1 are 1 and -1, but because N outputs a strictly positive number, it follows
that N(u) = 1, and thus this direction is verified.

(⇐)

Assume that N(u) = 1. We want to show u is a unit in R. We know that
the norm is the product of a number with its conjugate. Thus, if N(u) = 1, we
are done because the conjugate is just the inverse. Thus, both directions are
verified and the proof is complete.

(b) and (c):

These are fairly straightforward computations. Because neither 3 nor 7 is a
square, and each is not a multiple of 5, it follows that no norm of any element
in R can be 3 or 7.

(d):

These are again just computations. Note that

N(3) = 9 = 3 · 3

N(7) = 49 = 7 · 7

N(1 + 2
√
−5) = N(1− 2

√
−5) = 21 = 7 · 3

and no element of R has norm 3 or norm 7 so thus all of these cannot be
reduced further (hence irreducible).

(e):

When we check, we find that

3 · 7 = (1 + 2
√
−5)(1− 2

√
−5) = (1 + 4 · 5) = 21

(f):

The case in part (e) shows us that non unique factorizations exist in this
ring R! This is really cool because it is very difficult to actually construct and
work with a ring where factorizations are not unique.
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