March 4th 2020
MA484 Problem Day 2

1 Problem 2

Remember that an ideal in R is a subset $I \subset R$ which contains 0 , is closed under addition, and "absorbs products," that is, if $r \in I$ and $x \in R$ then $r x \in I$. The easiest ideals are the principal ideals, which are just the set of all multiples of some fixed element $a \in R$:

$$
I=R a=(a)=\{r a \mid r \in R\}
$$

The next-easiest ideals are the finitely-generated ones, where

$$
I=\left\{r_{1} a_{1}+r_{2} a_{2}++r_{k} a_{k} \mid r i \in R\right\}
$$

for some finite set of $a_{1}, a_{2}, \ldots, a_{n} \in R$. Let k be a field and let $R=k[x]$. Show that any ideal $I \subset R$ is principal. (If $I=\{0\}$, find an element $a \in I$ of minimal degree and prove that $I=R a$.) A domain in which every ideal is principal is called a principal ideal domain, or PID. The most important examples are \mathbb{Z} and $k[x]$ when k is a field.

Proof:

To show that any ideal $I \subset R$ is principal, we must show that it is generated by one element in I. We start by considering if I is the zero ideal.

If $I=\{0\}$, then we have that $I=\{a r \mid r \in R\}$ and $a=0$. This shows that this is a principal ideal in R.

If I is non-zero, we want to pick a polynomial $g(x) \in I$ of lowest degree, and want to show that the ideal I is the ideal generated by $g(x)$. This is to say

$$
I=<g(x)>
$$

Our next step is to take another element of $f(x) \in I$ (which is a polynomial) and divide it by our polynomial of minimal degree, $g(x)$. Using the division algorithm for polynomials, we have

$$
f(x)=g(x) q(x)+r(x)
$$

where $g(x), q(x), r(x)$ are all polynomials in I, and degree $r(x)<g(x)$ Rearranging our equation, we see that

$$
r(x)=f(x)-g(x) q(x)
$$

and $f(x) \in I$, and $g(x) q(x) \in I$ because $g(x) \in I$. Thus, we see that $r(x) \in I$. Now we see that because $r(x)$ has degree strictly less than $g(x)$, it must be that $r(x)$ is the zero polynomial because we defined $g(x)$ to have minimal degree. This shows that $g(x)$ generates all elements of I, and thus I is a principal ideal, which concludes the proof.

2 Problem 3

An ideal $I \subset R$ is called maximal if $I=R$ and there are no ideals "between" I and R : if J is an ideal and $I \subset J \subset R$ then either $I=J$ or $I=R$. Show that I is maximal if and only if R / I is a field.

Proof:

This is an if and only if so we must verify two directions. We start with the forward direction.

$$
(\Rightarrow)
$$

Assume that I is maximal. We want to show that R / I is a field. To show that R / I is a field, we want to show that it has multiplicative inverses.

Let $b+I \in R / I$ be an arbitrary element of R / I, where $b \in R$. Assume that this element is non-zero, because zero has no multiplicative inverse. Because $b+I \neq 0$, we know that $b \notin I$. We now create the set

$$
B=\{b r+a \mid r \in R, a \in I\}
$$

Claims about B : We now claim that this set B is an ideal of R that properly contains I. Additionally, we also claim that $B=R$, and $1 \in B$.
B contains I because if we let $r=0$, then all elements of B look like elements of I. B properly contains I because $b \in B$ and $b \notin I$. Additionally, B is an ideal because adding any two elements in B gives an element in B, and it absorbs products.

We now want to show that our arbitrary element $b+I$ has an inverse. Because I is maximal, and B properly contains I, we now know that $B=R$. In particular, $1 \in B$. Thus, we can write

$$
1=b c+a \quad c \in R, a \in I
$$

So in R / I, we have

$$
1+I=b c+a+I
$$

But I absorbs a because $a \in I$. So we are left with

$$
1+I=b c+I=(b+I)(c+I)
$$

Notice that $1+I$ is the identity element of R / I, so thus we have shown that our arbitrary element of R / I has a multiplicative inverse! Thus, R / I is a field and this direction of the implication is verified.
(\Leftarrow)
Assume that R / I is a field. We want to show that I is maximal. We once again consider our set B that we defined above. We have already shown that B properly contains I. Our new task is to now show that $B=R$.

We once again consider our arbitrary element $b+I \in R / I$ where $b \in B, b \notin I$. Because $b+I \in R / I$, it has a multiplicative inverse, let us call it $c+I$. Now we multiply the two to get the identity in R / I.

$$
(b+I)(c+I)=(b c+I)=1+I
$$

Thus, we can conclude that $b c-1 \in I$ via rearranging and using the properties of ideals. Our new goal is to show that $1 \in B$, because if this is true, then B is the whole ring R. Because $b c-1 \in I$, we have that

$$
1-b c+(b c)=1 \in B
$$

Thus, we now have that $1 \in B$, so it must be that $B=R$. This shows that I is maximal and the proof is complete. We have now verified both directions of the implication, and thus the if and only if holds.

3 Problem 4

An ideal $I \subset R$ is called prime if $a b \in I$ implies that either $a \in I$ or $b \in I$. Show that I is prime if and only if R / I is a domain.

Proof:

Because this is an if and only if statement, we must verify both directions. We start with the forward direction.
(\Rightarrow)

Assume that I is a prime ideal. We want to show that R / I is a domain.
Because I is a prime ideal, given $a b \in I$, it follows that $a \in I$ or $b \in I$. We now want to show that if we multiply any two elements in R / I and they produce the zero element in R / I, that one of the two things we multiplied with was the zero element in R / I. Consider

$$
0=(x+I)(y+I)=x y+I \quad x, y \in R
$$

Note that the zero element in R / I is I because it has the form $r+I$, where $r \in R$ is 0 . Because $x y+I=0$ in R / I, it must be that $x y \in I$. We can now use the fact that I is a prime ideal, which implies that

$$
x \in I \text { or } y \in I
$$

Without loss of generality, let's assume $x \in I$. Thus, it must be that $(x+I)=I$ which is the zero element of R / I. Thus, we have shown that one of the two things we multiplied in R / I to get the zero element was the zero element, and thus R / I has no zero divisors. Thus, R / I is a domain and this direction of the implication is verified.
(\Leftarrow)
Assume that R / I is a domain. We want to show that I is a prime ideal. Here, we will essentially do the forward implication in reverse to get this direction.

Consider the product of elements in R / I that produces the zero element in R / I. We will once again use $x, y \in R$ such that

$$
0=(x+I)(y+I)=x y+I
$$

Because R / I is a domain, it must be that either $(x+I)=0$, or $(y+I)=0$. For either of these to be true, it must be that x or y is an element of I. Thus, we conclude that either $x \in I$ or $y \in I$. Because $x y+I=0$, we can also conclude that $x y \in I$. Thus, we have that

$$
\text { if } x y \in I \text {, then either } x \in I \text { or } y \in I
$$

This is exactly the definition of a prime ideal, so thus, I is a prime ideal. We have verified both direction, so the if and only if holds and the proof is complete.

4 Problem 5

Show that any maximal ideal is prime. Find an easy example of a prime ideal that is not maximal.

Proof:

This one is quite quick. By Problem 3, we know

$$
I \text { is maximal ideal in } R \Leftrightarrow R / I \text { is a field }
$$

and we also know from Problem 4 that

$$
I \text { is a prime ideal in } R \Leftrightarrow R / I \text { is a domain }
$$

Let M be a maximal ideal in a ring R. By Problem 3, we know that R / M is a field. By Problem 4, we know that because a field is an integral domain, that M is a prime ideal of R. Thus, the proof is complete.

To find an example of a prime ideal that is not maximal, we want to look for a domain that is not a field because that is the link we established to prove that maximal ideals are prime ideals. Consider the zero ideal in a domain. Unless the domain is already a field, this ideal will not be maximal because there will be other elements in the ring R. Note that the zero ideal in a domain is prime, so thus, we have found a prime ideal in a ring R that is not maximal.

5 Problem 8

Suppose R is Noetherian, $a \in R, a=0, a \notin R^{x}$ (i.e. a is not a unit). Show that there exist irreducibles $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ such that $a=\pi_{1} \pi_{2} \ldots \pi_{k}$. In other words, factorizations exist.

Proof:

We will do this by contradiction. Suppose for a contradiction that a cannot be written as the product of irreducibles. Let us define the set of ideals

$$
S=\{a R \mid a \text { cannot be written as a product of irreducibles }\}
$$

By the property of Noetherian rings, S has a maximal element. Let us call this maximal element $s R$. Let us now say that

$$
s=x y
$$

and neither x nor y is a unit. Note that s must factor because it is not irreducible. Because x, y are not units, the ideals

$$
x R, y R \subsetneq s R
$$

Because $x y=s$, it follows that $x R$ and $y R$ are not in S. Thus, x and y can be written as the product of irreducibles (i.e. they factor). So we can write them as

$$
\begin{gathered}
x=\pi_{1} \pi_{2} \ldots \pi_{n}(u) \\
y=\rho_{1} \rho_{2} \ldots \rho_{k}(v)
\end{gathered}
$$

Where u and v are units in R. Thus, we can write S as

$$
s=x y=x=\pi_{1} \pi_{2} \ldots \pi_{n} \rho_{1} \rho_{2} \ldots \rho_{k}(u v)
$$

and now we have a contradiction because we assumed s could not be written as the product of irreducibles. Thus, it must be that in Noetherian rings, all non-zero, non-unit elements can be written as the product of irreducibles in the ring, and the proof is complete.

6 Problem 11

Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\} . R$ is known to be a Noetherian domain. Let $N: R \rightarrow \mathbb{Z}$ be the function $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$. Since this is just the square of the complex absolute value, we know that $N \alpha \beta)=N(\alpha) N(\beta)$. (Of course, it's easy to check that by hand as well.)
a. Show that u is a unit in R if and only if $N(u)=1$.
b. Show that no element of R has norm 3 .
c. Show that no element of R has norm 7 .
d. Show that $3,7,(1+2 \sqrt{-5})$, and $(1-2 \sqrt{-5})$ are all irreducible in R.
e. Check that $3 \times 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})$.
f. What does that tell you?

Proof:

This one has a lot of parts.
(a):

$$
(\Rightarrow)
$$

Assume that u is a unit in R. We want to show that $N(u)=1$. Because u is a unit, we know that

$$
u u^{-1}=1
$$

If we now apply our function N to $u u^{-1}$, by the properties of N, we get

$$
N\left(u u^{-1}\right)=N(u) N\left(u^{-1}\right)=1
$$

This shows us that $N(u)$ and $N\left(u^{-1}\right)$ must be factors of 1 . The only factors of 1 are 1 and -1 , but because N outputs a strictly positive number, it follows that $N(u)=1$, and thus this direction is verified.

$$
(\Leftarrow)
$$

Assume that $N(u)=1$. We want to show u is a unit in R. We know that the norm is the product of a number with its conjugate. Thus, if $N(u)=1$, we are done because the conjugate is just the inverse. Thus, both directions are verified and the proof is complete.
(b) and (c):

These are fairly straightforward computations. Because neither 3 nor 7 is a square, and each is not a multiple of 5 , it follows that no norm of any element in R can be 3 or 7 .
(d):

These are again just computations. Note that

$$
\begin{gathered}
N(3)=9=3 \cdot 3 \\
N(7)=49=7 \cdot 7 \\
N(1+2 \sqrt{-5})=N(1-2 \sqrt{-5})=21=7 \cdot 3
\end{gathered}
$$

and no element of R has norm 3 or norm 7 so thus all of these cannot be reduced further (hence irreducible).
(e):

When we check, we find that

$$
3 \cdot 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})=(1+4 \cdot 5)=21
$$

(f):

The case in part (e) shows us that non unique factorizations exist in this ring R ! This is really cool because it is very difficult to actually construct and work with a ring where factorizations are not unique.

