SCRIBAL NOTE

QIDONG HE

We conduct an informal investigation into the topological properties of algebraic curves over \mathbb{C} . To qualitatively characterize the degree of informality of our presentation, we quote Fernando himself: "Our aim is sightseeing, rather than a scientific expedition, so I will not worry too much if I fail to emphasize a subtle point here and there, nor if the theorems are less general than they could be, nor, in fact, if my readers do not learn all there is to know."¹ In the presentation to follow, we concern ourselves with only the nonsingular algebraic curves:

Convention. Throughout our presentation, we consider only the nonsingular algebraic curves (whose degrees are to be specified) in the complex projective plane $\mathbb{P}^2(\mathbb{C})$; that is, suppose that an algebraic curve \mathcal{C} of degree n is determined by the equation F(X, Y, Z) = 0, where deg F = n, then we require that the system of equations

$$\begin{cases} F = 0\\ \frac{\partial F}{\partial X} = 0\\ \frac{\partial F}{\partial Y} = 0\\ \frac{\partial F}{\partial Z} = 0 \end{cases}$$

have no solutions in $\mathbb{C}^3 \setminus \{(0,0,0)\}.$

1. The Projective Line

We start with the simplest example of a projective object over \mathbb{C} : $\mathbb{P}^1(\mathbb{C})$, the projective line over \mathbb{C} . To visualize $\mathbb{P}^1(\mathbb{C})$, we observe that the object can be decomposed into a finite portion and a single point at infinity; that is,

$$\mathbb{P}^{1}(\mathbb{C}) = \{ [u:v] \mid u, v \in \mathbb{C}; u, v \text{ are not both zero} \}$$
$$= \{ [u:1] \mid u \in \mathbb{C} \} \cup \{ [1:0] \}$$
$$\cong \mathbb{C} \cup \{ \infty \}.$$

We claim that this observation enables us to, topologically, see $\mathbb{C} \cup \{\infty\}$ as a sphere.

Consider the diagram shown in Figure 1.² Here, a sphere \mathbb{S}^2 is situated so that its origin O lies directly on the complex plane $\mathbb{C} \cong \mathbb{R}^2$. Letting N denote the north pole of the sphere, we see that each point $z \in \mathbb{C}$ is associated with a unique line passing through N and itself that intersects the sphere exactly once at Z. Conversely, given $Z \in \mathbb{S}^2 \setminus \{N\}$, the unique line passing through N and Z intersects the complex plane exactly once at z. Thus, we obtain a one-to-one correspondence between the points in \mathbb{C} and all the points in \mathbb{S}^2 but N. We improve this further by associating the point at infinity with the north pole, thereby obtaining a bijection.

Date: Mar. 2, 2020.

¹Source: *p*-adic Numbers: An Introduction (2nd Edition).

 $^{^{2}}$ Source: mathematica.stackexchange.com/questions/23793/stereographic-projection

FIGURE 1. Stereographic projection.

Proposition 1. The map

$$\phi: \mathbb{S}^2 \to \mathbb{C} \cup \{\infty\}$$
$$Z \mapsto z$$
$$N \mapsto \infty$$

is a bijection. Consequently, $\mathbb{P}^1(\mathbb{C}) \cong \mathbb{C} \cup \{\infty\}$ can be viewed, topologically, as a sphere.

This technique is known more generally as stereographic projection. We state without proving two properties of this construction:

Proposition 2. The inverse map $\phi^{-1} : \mathbb{C} \cup \{\infty\} \to \mathbb{S}^2$ maps any line on the complex plane, together with the point at infinity, into a circle on the sphere. Moreover, ϕ^{-1} preserves the angles of intersection.

2. Lines and Conics

We are now prepared to state the topological characterizations of lines and conics in $\mathbb{P}^2(\mathbb{C})$.

Proposition 3. Lines and conics in $\mathbb{P}^2(\mathbb{C})$ are homeomorphic to a sphere.

Rather than provide a rigorous proof to Proposition 3, we will simply explain the reasoning behind its conclusion.

To start with, let $\mathcal{L} \subset \mathbb{P}^2(\mathbb{C})$ be a line. \mathcal{L} is determined by the equation aX + bY + cZ = 0, where $a, b, c \in \mathbb{C}$ are not all zero. Via a suitable change of coordinates $T : (X, Y, Z) \mapsto (X', Y', Z')$, we may transform the equation into X' = 0. Equivalently, \mathcal{L} is the set of points

 $\{[0:Y':Z'] \mid Y', Z' \in \mathbb{C}; Y', Z' \text{ are not both zero}\}.$

Noticing the natural bijection $\varphi_{\mathcal{L}} : \mathcal{L} \to \mathbb{P}^1(\mathbb{C})$ given by

$$[0:Y':Z']\mapsto [Y':Z'],$$

and resorting to Proposition 1, we conclude that \mathcal{L} is homeomorphic to a sphere.

We now turn our attention to conics. Let C be a conic determined by some degree 2 equation F(X, Y, Z) = 0. Via a suitable change of coordinates, we may transform the equation into $Y'^2 = X'Z'$, which has the rational parameterization

$$\begin{cases} X' = U'^2 \\ Y' = U'V' \\ Z' = V'^2 \end{cases}$$

where $U', V' \in \mathbb{C}$ are not both zero. Again, we notice the natural bijection $\varphi_{\mathcal{C}} : \mathcal{C} \to \mathbb{P}^1(\mathbb{C})$ given by

$$[U'^2: U'V': V'^2] \mapsto [U': V']$$

to conclude that \mathcal{C} is homeomorphic to a sphere.

3. CUBICS

We now focus on the topological characterization of the cubics.

Let $\mathcal{C} \in \mathbb{P}^2(\mathbb{C})$ be a cubic. We recall that \mathcal{C} may be decomposed into a finite portion and a single point at infinity. Without loss of generality, we assume that the equation defining the finite portion of \mathcal{C} is in the Weierstrauss form, i.e. it is determined by the algebraic equation $y^2 = f(x)$, where f(x) is a degree 3 polynomial in x. Further, via a suitable change of coordinates if necessary, we can assume that the equation is $y^2 = x(x-1)(x-\lambda)$, where $\lambda \neq 0, 1$, and thus the corresponding projective equation of \mathcal{C} is $Y^2Z = X(X-Z)(X-\lambda Z)$.

We observe that for each $x_0 \in \mathbb{C}\setminus\{0, 1, \lambda\}$, there are exactly two points on \mathcal{C} with xcoordinate x_0 , i.e. $(x_0, \pm \sqrt{x_0(x_0 - 1)(x_0 - \lambda)})$. On the other hand, if $x_0 = 0, 1$, or λ , then $(x_0, 0)$ is the only point on \mathcal{C} with x-coordinate x_0 . Moreover, we note that [0:1:0] is the only point on \mathcal{C} at infinity. Hence, we conclude that the map $\pi: \mathcal{C} \to \mathbb{P}^1(\mathbb{C})$ defined by

$$(x, y) \mapsto x$$
$$0: 1: 0] \mapsto \infty$$

is two-to-one except at the four points $0, 1, \lambda$, and $\infty \equiv [0:1:0]$.

In order to obtain a topological characterization of \mathcal{C} , we employ a strategy with which Riemann first yielded great success in his study of differential geometry. First, we use the fact that π defines a two-to-one (except for $0, 1, \lambda$, and ∞) map from \mathcal{C} to $\mathbb{P}^1(\mathbb{C})$ to obtain two copies of $\mathbb{P}^1(\mathbb{C})$. By Proposition 1, each copy of $\mathbb{P}^1(\mathbb{C})$ is homeomorphic to the sphere \mathbb{S}^2 . To take into account the fact that π fails to be two-to-one at $0, 1, \lambda$, and ∞ , we make two cuts on each sphere along the path P_1 joining $\pi(0)$ and $\pi(1)$ and along a non-intersecting path P_2 joining $\pi(\lambda)$ and $\pi(\infty)$. Then, we glue the two copies of \mathbb{S}^2 together in such a way that the two copies of P_1 are pasted together and similarly are the two copies of P_2 . Finally, we open up the slits formed as a result of our cutting along P_1 and P_2 respectively, and obtain a torus. See Figure 2.³

Hence, we conclude that:

Proposition 4. Cubics in $\mathbb{P}^2(\mathbb{C})$ are homeomorphic to a torus.

4. General Algebraic Curves

We now move on to discuss the topological characterization of general algebraic curves over \mathbb{C} , thought of as objects in $\mathbb{P}^2(\mathbb{C})$.

Let $\mathcal{C} \subset \mathbb{P}^2(\mathbb{C})$ be any algebraic curve over \mathbb{C} , and suppose that \mathcal{C} is defined by the equation F(X, Y, Z) = 0. We note that the equation F(X, Y, Z) = 0 defines a closed subset of $\mathbb{P}^2(\mathbb{C})$. Thus, by accepting the fact that $\mathbb{P}^2(\mathbb{C})$ is compact, we conclude that \mathcal{C} is also compact.

It is known that for every algebraic curve over \mathbb{C} , there is an associated complex surface that is compact, orientable over \mathbb{C} , and has a one-dimensional (over \mathbb{C}) tangent plane at each point. Such surfaces have been completely classified by their genus, g, which, intuitively, is

³Source: Undergraduate Algebraic Geometry.

(B) Pasting

FIGURE 2. Visualizing a cubic.

the number of "holes on the surface." For example, a sphere has g = 0, while a torus has g = 1. See Figure 3.⁴

FIGURE 3. The classification of orientable surfaces (2-manifolds).

It turns out that we may obtain a lot of information about the algebraic curve C itself from the genus of its associated surface alone. In our enumeration of some examples of these known properties, we follow the conventional trichotomy: g = 0, g = 1, and $g \ge 2$.

4.1. g = 0. If the associated surface of $\mathcal{C} \subset \mathbb{P}^2(\mathbb{C})$ is homeomorphic to \mathbb{S}^2 , then

- (1) \mathcal{C} is either a line or a conic;
- (2) \mathcal{C} has a rational parameterization;
- (3) the fundamental group of C is simply connected, i.e. $\pi_1(C) = \{1\};$
- (4) the surface admits a metric with constant positive curvature;
- (5) $\mathcal{C}(\mathbb{Q})$, the set of rational points on \mathcal{C} , is either empty or isomorphic to $\mathbb{P}^1(\mathbb{Q})$;
- (6) all such C's are isomorphic to each other;
- (7) the automorphisms of C are the projective transformations, e.g. the Mobius transformations $z \mapsto \frac{az+b}{cz+d}$ with $ad - bc \neq 0$, and these automorphisms form a 3-dimensional group.

⁴Source: www.map.mpim-bonn.mpg.de/2-manifolds

- 4.2. g = 1. If the associated surface of C is homeomorphic to \mathbb{T}^2 , then
 - (1) C is a smooth cubic;
 - (2) $\pi_1(\mathcal{C}) \cong \mathbb{Z} \oplus \mathbb{Z};$
 - (3) the surface admits a metric with zero curvature;
 - (4) $\mathcal{C}(\mathbb{Q})$ forms a finitely generated Abelian group;
 - (5) \mathcal{C} belongs to a one-dimensional isomorphism class;
 - (6) the group of automorphisms of C is isomorphic to the direct product of the group of translations in the group law and some finite group;
 - (7) there exists a group homomorphism $\mathbb{C} \to \mathcal{C}$ whose kernel is isomorphic to $\mathbb{Z} \times \mathbb{Z}\tau$, where $\tau \notin \mathbb{R}$.
- 4.3. $g \geq 2$. If the associated surface of \mathcal{C} has genus $g \geq 2$, then
 - (1) \mathcal{C} is determined by some algebraic equation with degree higher than 3;
 - (2) $\pi_1(\mathcal{C})$ is close to a free group;
 - (3) the surface admits a metric with constant negative curvature;
 - (4) $\mathcal{C}(\mathbb{Q})$ is finite;
 - (5) C belongs to a (3g-3)-dimensional isomorphism class;
 - (6) the automorphisms of \mathcal{C} form a finite group.

We note that it is an open problem to determine the size of $\mathcal{C}(\mathbb{Q})$.