
SCRIBAL NOTE

QIDONG HE

We conduct an informal investigation into the topological properties of algebraic curves
over C. To qualitatively characterize the degree of informality of our presentation, we quote
Fernando himself: “Our aim is sightseeing, rather than a scientific expedition, so I will not
worry too much if I fail to emphasize a subtle point here and there, nor if the theorems
are less general than they could be, nor, in fact, if my readers do not learn all there is
to know.”1 In the presentation to follow, we concern ourselves with only the nonsingular
algebraic curves:

Convention. Throughout our presentation, we consider only the nonsingular algebraic curves
(whose degrees are to be specified) in the complex projective plane P2(C); that is, suppose
that an algebraic curve C of degree n is determined by the equation F (X, Y, Z) = 0, where
degF = n, then we require that the system of equations

F = 0
∂F
∂X

= 0
∂F
∂Y

= 0
∂F
∂Z

= 0

have no solutions in C3\{(0, 0, 0)}.

1. The Projective Line

We start with the simplest example of a projective object over C: P1(C), the projective
line over C. To visualize P1(C), we observe that the object can be decomposed into a finite
portion and a single point at infinity; that is,

P1(C) = {[u : v] | u, v ∈ C; u, v are not both zero}
= {[u : 1] | u ∈ C} ∪ {[1 : 0]}
∼= C ∪ {∞}.

We claim that this observation enables us to, topologically, see C ∪ {∞} as a sphere.
Consider the diagram shown in Figure 1.2 Here, a sphere S2 is situated so that its origin

O lies directly on the complex plane C ∼= R2. Letting N denote the north pole of the sphere,
we see that each point z ∈ C is associated with a unique line passing through N and itself
that intersects the sphere exactly once at Z. Conversely, given Z ∈ S2\{N}, the unique
line passing through N and Z intersects the complex plane exactly once at z. Thus, we
obtain a one-to-one correspondence between the points in C and all the points in S2 but N .
We improve this further by associating the point at infinity with the north pole, thereby
obtaining a bijection.

Date: Mar. 2, 2020.
1Source: p-adic Numbers: An Introduction (2nd Edition).
2Source: mathematica.stackexchange.com/questions/23793/stereographic-projection

1

mathematica.stackexchange.com/questions/23793/stereographic-projection


2 QIDONG HE

Figure 1. Stereographic projection.

Proposition 1. The map

φ : S2 → C ∪ {∞}
Z 7→ z

N 7→ ∞
is a bijection. Consequently, P1(C) ∼= C ∪ {∞} can be viewed, topologically, as a sphere.

This technique is known more generally as stereographic projection. We state without
proving two properties of this construction:

Proposition 2. The inverse map φ−1 : C∪{∞} → S2 maps any line on the complex plane,
together with the point at infinity, into a circle on the sphere. Moreover, φ−1 preserves the
angles of intersection.

2. Lines and Conics

We are now prepared to state the topological characterizations of lines and conics in P2(C).

Proposition 3. Lines and conics in P2(C) are homeomorphic to a sphere.

Rather than provide a rigorous proof to Proposition 3, we will simply explain the reasoning
behind its conclusion.

To start with, let L ⊂ P2(C) be a line. L is determined by the equation aX+bY +cZ = 0,
where a, b, c ∈ C are not all zero. Via a suitable change of coordinates T : (X, Y, Z) 7→
(X ′, Y ′, Z ′), we may transform the equation into X ′ = 0. Equivalently, L is the set of points

{[0 : Y ′ : Z ′] | Y ′, Z ′ ∈ C; Y ′, Z ′ are not both zero}.
Noticing the natural bijection ϕL : L → P1(C) given by

[0 : Y ′ : Z ′] 7→ [Y ′ : Z ′],

and resorting to Proposition 1, we conclude that L is homeomorphic to a sphere.
We now turn our attention to conics. Let C be a conic determined by some degree 2

equation F (X, Y, Z) = 0. Via a suitable change of coordinates, we may transform the
equation into Y ′2 = X ′Z ′, which has the rational parameterization

X ′ = U ′2

Y ′ = U ′V ′

Z ′ = V ′2
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where U ′, V ′ ∈ C are not both zero. Again, we notice the natural bijection ϕC : C → P1(C)
given by

[U ′2 : U ′V ′ : V ′2] 7→ [U ′ : V ′]

to conclude that C is homeomorphic to a sphere.

3. Cubics

We now focus on the topological characterization of the cubics.
Let C ∈ P2(C) be a cubic. We recall that C may be decomposed into a finite portion and

a single point at infinity. Without loss of generality, we assume that the equation defining
the finite portion of C is in the Weierstrauss form, i.e. it is determined by the algebraic
equation y2 = f(x), where f(x) is a degree 3 polynomial in x. Further, via a suitable change
of coordinates if necessary, we can assume that the equation is y2 = x(x− 1)(x− λ), where
λ 6= 0, 1, and thus the corresponding projective equation of C is Y 2Z = X(X −Z)(X −λZ).

We observe that for each x0 ∈ C\{0, 1, λ}, there are exactly two points on C with x-

coordinate x0, i.e. (x0,±
√
x0(x0 − 1)(x0 − λ)). On the other hand, if x0 = 0, 1, or λ, then

(x0, 0) is the only point on C with x-coordinate x0. Moreover, we note that [0 : 1 : 0] is the
only point on C at infinity. Hence, we conclude that the map π : C → P1(C) defined by

(x, y) 7→ x

[0 : 1 : 0] 7→ ∞

is two-to-one except at the four points 0, 1, λ, and ∞ ≡ [0 : 1 : 0].
In order to obtain a topological characterization of C, we employ a strategy with which

Riemann first yielded great success in his study of differential geometry. First, we use the
fact that π defines a two-to-one (except for 0, 1, λ, and ∞) map from C to P1(C) to obtain
two copies of P1(C). By Proposition 1, each copy of P1(C) is homeomorphic to the sphere
S2. To take into account the fact that π fails to be two-to-one at 0, 1, λ, and∞, we make two
cuts on each sphere along the path P1 joining π(0) and π(1) and along a non-intersecting
path P2 joining π(λ) and π(∞). Then, we glue the two copies of S2 together in such a way
that the two copies of P1 are pasted together and similarly are the two copies of P2. Finally,
we open up the slits formed as a result of our cutting along P1 and P2 respectively, and
obtain a torus. See Figure 2.3

Hence, we conclude that:

Proposition 4. Cubics in P2(C) are homeomorphic to a torus.

4. General Algebraic Curves

We now move on to discuss the topological characterization of general algebraic curves
over C, thought of as objects in P2(C).

Let C ⊂ P2(C) be any algebraic curve over C, and suppose that C is defined by the equation
F (X, Y, Z) = 0. We note that the equation F (X, Y, Z) = 0 defines a closed subset of P2(C).
Thus, by accepting the fact that P2(C) is compact, we conclude that C is also compact.

It is known that for every algebraic curve over C, there is an associated complex surface
that is compact, orientable over C, and has a one-dimensional (over C) tangent plane at each
point. Such surfaces have been completely classified by their genus, g, which, intuitively, is

3Source: Undergraduate Algebraic Geometry.
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(a) Cutting

(b) Pasting

Figure 2. Visualizing a cubic.

the number of “holes on the surface.” For example, a sphere has g = 0, while a torus has
g = 1. See Figure 3.4

Figure 3. The classification of orientable surfaces (2-manifolds).

It turns out that we may obtain a lot of information about the algebraic curve C itself
from the genus of its associated surface alone. In our enumeration of some examples of these
known properties, we follow the conventional trichotomy: g = 0, g = 1, and g ≥ 2.

4.1. g = 0. If the associated surface of C ⊂ P2(C) is homeomorphic to S2, then

(1) C is either a line or a conic;
(2) C has a rational parameterization;
(3) the fundamental group of C is simply connected, i.e. π1(C) = {1};
(4) the surface admits a metric with constant positive curvature;
(5) C(Q), the set of rational points on C, is either empty or isomorphic to P1(Q);
(6) all such C’s are isomorphic to each other;
(7) the automorphisms of C are the projective transformations, e.g. the Mobius transfor-

mations z 7→ az+b
cz+d

with ad− bc 6= 0, and these automorphisms form a 3-dimensional
group.

4Source: www.map.mpim-bonn.mpg.de/2-manifolds
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4.2. g = 1. If the associated surface of C is homeomorphic to T2, then

(1) C is a smooth cubic;
(2) π1(C) ∼= Z⊕ Z;
(3) the surface admits a metric with zero curvature;
(4) C(Q) forms a finitely generated Abelian group;
(5) C belongs to a one-dimensional isomorphism class;
(6) the group of automorphisms of C is isomorphic to the direct product of the group of

translations in the group law and some finite group;
(7) there exists a group homomorphism C → C whose kernel is isomorphic to Z × Zτ ,

where τ 6∈ R.

4.3. g ≥ 2. If the associated surface of C has genus g ≥ 2, then

(1) C is determined by some algebraic equation with degree higher than 3;
(2) π1(C) is close to a free group;
(3) the surface admits a metric with constant negative curvature;
(4) C(Q) is finite;
(5) C belongs to a (3g − 3)-dimensional isomorphism class;
(6) the automorphisms of C form a finite group.

We note that it is an open problem to determine the size of C(Q).
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