SCRIBAL NOTE

QIDONG HE

We conduct an informal investigation into the topological properties of algebraic curves over \mathbb{C}. To qualitatively characterize the degree of informality of our presentation, we quote Fernando himself: "Our aim is sightseeing, rather than a scientific expedition, so I will not worry too much if I fail to emphasize a subtle point here and there, nor if the theorems are less general than they could be, nor, in fact, if my readers do not learn all there is to know." ${ }^{1}$ In the presentation to follow, we concern ourselves with only the nonsingular algebraic curves:
Convention. Throughout our presentation, we consider only the nonsingular algebraic curves (whose degrees are to be specified) in the complex projective plane $\mathbb{P}^{2}(\mathbb{C})$; that is, suppose that an algebraic curve \mathcal{C} of degree n is determined by the equation $F(X, Y, Z)=0$, where $\operatorname{deg} F=n$, then we require that the system of equations

$$
\left\{\begin{array}{l}
F=0 \\
\frac{\partial F}{\partial X}=0 \\
\frac{\partial F}{\partial Y}=0 \\
\frac{\partial F}{\partial Z}=0
\end{array}\right.
$$

have no solutions in $\mathbb{C}^{3} \backslash\{(0,0,0)\}$.

1. The Projective Line

We start with the simplest example of a projective object over $\mathbb{C}: \mathbb{P}^{1}(\mathbb{C})$, the projective line over \mathbb{C}. To visualize $\mathbb{P}^{1}(\mathbb{C})$, we observe that the object can be decomposed into a finite portion and a single point at infinity; that is,

$$
\begin{aligned}
\mathbb{P}^{1}(\mathbb{C}) & =\{[u: v] \mid u, v \in \mathbb{C} ; u, v \text { are not both zero }\} \\
& =\{[u: 1] \mid u \in \mathbb{C}\} \cup\{[1: 0]\} \\
& \cong \mathbb{C} \cup\{\infty\} .
\end{aligned}
$$

We claim that this observation enables us to, topologically, see $\mathbb{C} \cup\{\infty\}$ as a sphere.
Consider the diagram shown in Figure $\mathbb{1}_{[}^{2}$ Here, a sphere \mathbb{S}^{2} is situated so that its origin O lies directly on the complex plane $\mathbb{C} \cong \mathbb{R}^{2}$. Letting N denote the north pole of the sphere, we see that each point $z \in \mathbb{C}$ is associated with a unique line passing through N and itself that intersects the sphere exactly once at Z. Conversely, given $Z \in \mathbb{S}^{2} \backslash\{N\}$, the unique line passing through N and Z intersects the complex plane exactly once at z. Thus, we obtain a one-to-one correspondence between the points in \mathbb{C} and all the points in \mathbb{S}^{2} but N. We improve this further by associating the point at infinity with the north pole, thereby obtaining a bijection.

[^0]

Figure 1. Stereographic projection.
Proposition 1. The map

$$
\begin{aligned}
\phi: \mathbb{S}^{2} & \rightarrow \mathbb{C} \cup\{\infty\} \\
Z & \mapsto z \\
N & \mapsto \infty
\end{aligned}
$$

is a bijection. Consequently, $\mathbb{P}^{1}(\mathbb{C}) \cong \mathbb{C} \cup\{\infty\}$ can be viewed, topologically, as a sphere.
This technique is known more generally as stereographic projection. We state without proving two properties of this construction:
Proposition 2. The inverse map $\phi^{-1}: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{S}^{2}$ maps any line on the complex plane, together with the point at infinity, into a circle on the sphere. Moreover, ϕ^{-1} preserves the angles of intersection.

2. Lines and Conics

We are now prepared to state the topological characterizations of lines and conics in $\mathbb{P}^{2}(\mathbb{C})$.
Proposition 3. Lines and conics in $\mathbb{P}^{2}(\mathbb{C})$ are homeomorphic to a sphere.
Rather than provide a rigorous proof to Proposition 3, we will simply explain the reasoning behind its conclusion.

To start with, let $\mathcal{L} \subset \mathbb{P}^{2}(\mathbb{C})$ be a line. \mathcal{L} is determined by the equation $a X+b Y+c Z=0$, where $a, b, c \in \mathbb{C}$ are not all zero. Via a suitable change of coordinates $T:(X, Y, Z) \mapsto$ $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$, we may transform the equation into $X^{\prime}=0$. Equivalently, \mathcal{L} is the set of points

$$
\left\{\left[0: Y^{\prime}: Z^{\prime}\right] \mid Y^{\prime}, Z^{\prime} \in \mathbb{C} ; Y^{\prime}, Z^{\prime} \text { are not both zero }\right\} .
$$

Noticing the natural bijection $\varphi_{\mathcal{L}}: \mathcal{L} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ given by

$$
\left[0: Y^{\prime}: Z^{\prime}\right] \mapsto\left[Y^{\prime}: Z^{\prime}\right]
$$

and resorting to Proposition 1, we conclude that \mathcal{L} is homeomorphic to a sphere.
We now turn our attention to conics. Let \mathcal{C} be a conic determined by some degree 2 equation $F(X, Y, Z)=0$. Via a suitable change of coordinates, we may transform the equation into $Y^{\prime 2}=X^{\prime} Z^{\prime}$, which has the rational parameterization

$$
\left\{\begin{array}{l}
X^{\prime}=U^{\prime 2} \\
Y^{\prime}=U^{\prime} V^{\prime} \\
Z^{\prime}=V^{\prime 2}
\end{array}\right.
$$

where $U^{\prime}, V^{\prime} \in \mathbb{C}$ are not both zero. Again, we notice the natural bijection $\varphi_{\mathcal{C}}: \mathcal{C} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ given by

$$
\left[U^{\prime 2}: U^{\prime} V^{\prime}: V^{\prime 2}\right] \mapsto\left[U^{\prime}: V^{\prime}\right]
$$

to conclude that \mathcal{C} is homeomorphic to a sphere.

3. Cubics

We now focus on the topological characterization of the cubics.
Let $\mathcal{C} \in \mathbb{P}^{2}(\mathbb{C})$ be a cubic. We recall that \mathcal{C} may be decomposed into a finite portion and a single point at infinity. Without loss of generality, we assume that the equation defining the finite portion of \mathcal{C} is in the Weierstrauss form, i.e. it is determined by the algebraic equation $y^{2}=f(x)$, where $f(x)$ is a degree 3 polynomial in x. Further, via a suitable change of coordinates if necessary, we can assume that the equation is $y^{2}=x(x-1)(x-\lambda)$, where $\lambda \neq 0,1$, and thus the corresponding projective equation of \mathcal{C} is $Y^{2} Z=X(X-Z)(X-\lambda Z)$.

We observe that for each $x_{0} \in \mathbb{C} \backslash\{0,1, \lambda\}$, there are exactly two points on \mathcal{C} with x coordinate x_{0}, i.e. $\left(x_{0}, \pm \sqrt{x_{0}\left(x_{0}-1\right)\left(x_{0}-\lambda\right)}\right)$. On the other hand, if $x_{0}=0,1$, or λ, then $\left(x_{0}, 0\right)$ is the only point on \mathcal{C} with x-coordinate x_{0}. Moreover, we note that $[0: 1: 0]$ is the only point on \mathcal{C} at infinity. Hence, we conclude that the map $\pi: \mathcal{C} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ defined by

$$
\begin{aligned}
(x, y) & \mapsto x \\
{[0: 1: 0] } & \mapsto \infty
\end{aligned}
$$

is two-to-one except at the four points $0,1, \lambda$, and $\infty \equiv[0: 1: 0]$.
In order to obtain a topological characterization of \mathcal{C}, we employ a strategy with which Riemann first yielded great success in his study of differential geometry. First, we use the fact that π defines a two-to-one (except for $0,1, \lambda$, and ∞) map from \mathcal{C} to $\mathbb{P}^{1}(\mathbb{C})$ to obtain two copies of $\mathbb{P}^{1}(\mathbb{C})$. By Proposition 1 , each copy of $\mathbb{P}^{1}(\mathbb{C})$ is homeomorphic to the sphere \mathbb{S}^{2}. To take into account the fact that π fails to be two-to-one at $0,1, \lambda$, and ∞, we make two cuts on each sphere along the path P_{1} joining $\pi(0)$ and $\pi(1)$ and along a non-intersecting path P_{2} joining $\pi(\lambda)$ and $\pi(\infty)$. Then, we glue the two copies of \mathbb{S}^{2} together in such a way that the two copies of P_{1} are pasted together and similarly are the two copies of P_{2}. Finally, we open up the slits formed as a result of our cutting along P_{1} and P_{2} respectively, and obtain a torus. See Figure 23^{3}

Hence, we conclude that:
Proposition 4. Cubics in $\mathbb{P}^{2}(\mathbb{C})$ are homeomorphic to a torus.

4. General Algebraic Curves

We now move on to discuss the topological characterization of general algebraic curves over \mathbb{C}, thought of as objects in $\mathbb{P}^{2}(\mathbb{C})$.

Let $\mathcal{C} \subset \mathbb{P}^{2}(\mathbb{C})$ be any algebraic curve over \mathbb{C}, and suppose that \mathcal{C} is defined by the equation $F(X, Y, Z)=0$. We note that the equation $F(X, Y, Z)=0$ defines a closed subset of $\mathbb{P}^{2}(\mathbb{C})$. Thus, by accepting the fact that $\mathbb{P}^{2}(\mathbb{C})$ is compact, we conclude that \mathcal{C} is also compact.

It is known that for every algebraic curve over \mathbb{C}, there is an associated complex surface that is compact, orientable over \mathbb{C}, and has a one-dimensional (over \mathbb{C}) tangent plane at each point. Such surfaces have been completely classified by their genus, g, which, intuitively, is

[^1]

Figure 2. Visualizing a cubic.
the number of "holes on the surface." For example, a sphere has $g=0$, while a torus has $g=1$. See Figure 3$]^{4}$

Figure 3. The classification of orientable surfaces (2-manifolds).
It turns out that we may obtain a lot of information about the algebraic curve \mathcal{C} itself from the genus of its associated surface alone. In our enumeration of some examples of these known properties, we follow the conventional trichotomy: $g=0, g=1$, and $g \geq 2$.
4.1. $g=0$. If the associated surface of $\mathcal{C} \subset \mathbb{P}^{2}(\mathbb{C})$ is homeomorphic to \mathbb{S}^{2}, then
(1) \mathcal{C} is either a line or a conic;
(2) \mathcal{C} has a rational parameterization;
(3) the fundamental group of \mathcal{C} is simply connected, i.e. $\pi_{1}(\mathcal{C})=\{1\}$;
(4) the surface admits a metric with constant positive curvature;
(5) $\mathcal{C}(\mathbb{Q})$, the set of rational points on \mathcal{C}, is either empty or isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$;
(6) all such \mathcal{C} 's are isomorphic to each other;
(7) the automorphisms of \mathcal{C} are the projective transformations, e.g. the Mobius transformations $z \mapsto \frac{a z+b}{c z+d}$ with $a d-b c \neq 0$, and these automorphisms form a 3-dimensional group.

[^2]4.2. $g=1$. If the associated surface of \mathcal{C} is homeomorphic to \mathbb{T}^{2}, then
(1) \mathcal{C} is a smooth cubic;
(2) $\pi_{1}(\mathcal{C}) \cong \mathbb{Z} \oplus \mathbb{Z}$;
(3) the surface admits a metric with zero curvature;
(4) $\mathcal{C}(\mathbb{Q})$ forms a finitely generated Abelian group;
(5) \mathcal{C} belongs to a one-dimensional isomorphism class;
(6) the group of automorphisms of \mathcal{C} is isomorphic to the direct product of the group of translations in the group law and some finite group;
(7) there exists a group homomorphism $\mathbb{C} \rightarrow \mathcal{C}$ whose kernel is isomorphic to $\mathbb{Z} \times \mathbb{Z} \tau$, where $\tau \notin \mathbb{R}$.
4.3. $g \geq 2$. If the associated surface of \mathcal{C} has genus $g \geq 2$, then
(1) \mathcal{C} is determined by some algebraic equation with degree higher than 3 ;
(2) $\pi_{1}(\mathcal{C})$ is close to a free group;
(3) the surface admits a metric with constant negative curvature;
(4) $\mathcal{C}(\mathbb{Q})$ is finite;
(5) \mathcal{C} belongs to a $(3 g-3)$-dimensional isomorphism class;
(6) the automorphisms of \mathcal{C} form a finite group.

We note that it is an open problem to determine the size of $\mathcal{C}(\mathbb{Q})$.

[^0]: Date: Mar. 2, 2020.
 ${ }^{1}$ Source: p-adic Numbers: An Introduction (2nd Edition).
 ${ }^{2}$ Source: mathematica.stackexchange.com/questions/23793/stereographic-projection

[^1]: ${ }^{3}$ Source: Undergraduate Algebraic Geometry.

[^2]: ${ }^{4}$ Source: www.map.mpim-bonn.mpg.de/2-manifolds

