
MA434 Scribe Notes
February 26, 2020

Annie Holden

1 Linear Systems (“A Conclusion of the Last Episode”)

This is the end of Joshua’s presentation.

Proposition 2.6: Let k be an infinite field, and P1, ..., P8 ∈ P2
k distinct points; suppose that no 4

of P1, ..., P8 are collinear, and no 7 of them lie on a nondegenerate conic. Then

dimS3(P1, ..., P8) = 2.

Proof: Applying what we discussed last time (see Jack’s scribe notes), we proved:

dimS3(P1, ..., P8) ≤ 2.

dimS3(P1, ..., P8) ≥
(

3 + 2

2

)
− 8 = 2.

dimS3(P1, ..., P8) = 2. �

This gives us the following corollary (which will be useful later when proving that our group is
associative!).

Corollary 2.7: Let C1, C2 be cubics that intersect at 9 distinct points C1 ∩ C2 = {P1, ..., P9}.
Then any cubic D through P1, ..., P8 passes through P9.

Proof: If 4 of P1, ..., P8 were collinear, then C1 and C2 would share a line. Similarly, if 7 of
P1, ..., P8 were conconic, then C1 and C2 would share a conic. But if C1, C2 shared a line or conic
then C1∩C2 would contain infinitely many points which contradicts our assumption. It follows that
no 4 of P1, ..., P8 are collinear and no 7 of P1, ..., P8 are conconic so the conditions for Proposition
2.6 are met and so:

dimS3(P1, ..., P8) = 2

It follows that F1, F2 (the equations of C1, C2) form a basis of S3(P1, ..., P8). Note that, since these
are two distinct conics (they are not scalar multiples of each other), they are linearly independent.
So given some conic D : (G = 0), G = aF1 +F2. Since F1, F2 = 0 at P9, G = 0 at P9 and D passes
through P9. �

In simple terms, this says that if you fix 8 points then any cubic will go through a distinct 9th

point. This means there is a linear dependence relation between equations.

This is where Nathaniel and Jack start presenting on sections 2.8-2.10 in Reid.



2 Group Law on Plane Cubics

Goal: to define the group structure of points on a plane cubic. First, we need to establish condi-
tions.

Let k be a subfield of C and F ∈ k[X,Y, Z] a cubic form C : F = 0 ⊂ P2
k. Assume F satisfies the

following conditions:

• F is irreducible. (F does not contain a line or conic.)

• For any P ∈ C, there exists a unique line in P2
k for which P is a repeated zero of F |L. (Think

of L as a tangent line since we think of tangents as double intersections. For any point, there
is one line that has two or three repeated zeros.)

We will define the group operation:
(1) Fix any point O ∈ C (this will be the zero element).
(2) For any A ∈ C, Ā is the third intersection of AO on C.

Figure 1: Finding Ā

(3) Call A+B = R̄ where R is the third intersection of AB with C.

Figure 2: A+B = R̄

Simply, follow these steps to find A + B: draw AB, find the third intersection R, draw RO, then
find the third intersection R̄ = A+B.
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Note that when A = B, AB is the tangent line at A.

Figure 3: Finding A+A = R̄

We are ready to present the theorem:

Theorem: Under the operation we constructed, the points of C form an Abelian group with O
being the zero element.

Proof: We will show all the conditions are satisfied.

I. Well Defined Let P,Q ∈ C be given. we show the group operation is well defined. We have
two cases.
Case: P 6= Q. There exists a unique line PQ with a unique third intersection with C. Note that it
is possible for P or Q to be this third intersection.

Case: P = Q. There exists a unique tangent line to Q which contains a third unique intersection
with C.

In both of these cases, we rely on the fact that conics have three zeros (with multiplicity) so any line
intersecting the conic will intersect it a third time, accounting for double and triple intersections.
Since any line PQ has a third intersection on the curve, we can find third elements R (on PQ) and
R̄ (on OR) such that P +Q = R̄. In all cases, the group operation is well defined.

II. Zero Element We will show that, given any A, A + O = A. (O + A = O is obvious upon
demonstration of commutativity.)

By definition, A,O, Ā are collinear. Figure 1 makes this clear. Ā is the third point in the intersec-
tion of AO (recalling Figure 2, think Ā = R.) Next we look at the line ĀO whose third point in
the intersection is A. Thus A+O = A.

It’s also good to check that 0 + 0 = 0. Consider the tangent line at O (which has multiplicity 2)
and call R the third point in the intersection with C. Trace the line OR back to O to find that O
is the third intersection (again, with multiplicity 2). O +O = O.

III. Additive Inverses Given A ∈ C, we will show there exists B ∈ C such that A + B = O.
(i) Find Ō
(ii) Connect A to Ō
(iii) Label B the third intersection of the curve and AŌ
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Figure 4: Finding B such that A+B = O

Note that if O is an inflection point, the tangent line at O is a triple root and O = Ō.

IV. Commutativity Noting that AB = BA, commutativity follows. nice.

V. Associativity This one is hard. To make things easier, we first prove the case in which
A,B,C ∈ C are distinct points.

We separately consider (A+B) +C and A+ (B+C) in order to ultimately demonstrate that they
must be the same. First, we consider (A + B) + C. Since we are performing the operation twice
(first A+B = R̄, then R̄+ C = S̄), we now have four lines to consider:

L1 : ABR (orange)
L2 : ROR̄ (blue)
L3 : CR̄S (green)
L4 : SOS̄ (purple)

Figure 5: Drawing Four Lines to Find (A+B) + C = S̄

Next, we follow the same process to consider A+ (B+C) = T̄ . Note that, since we already proved
commutativity, we can equivalently look at (B + C) +A = T̄ . We draw four more lines:
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M1 : BCQ
M2 : QOQ̄
M3 : QT̄S
M4 : TOT̄

We aim to show that S̄ = T̄ . It is sufficient to show that S = T because O is fixed and the last
step only requires connecting S, T to O. This means we don’t need to worry about lines L4,M4.

Now we construct two cubics, D1 and D2. Let D1 := L1 ∪M2 ∪ L3 and D2 := M1 ∪ L2 ∪M3.
(These are cubics because we are multiplying three equations of lines together. The effect on the
picture is that we union these lines together. Reid uses the notation + to denote this.) By smart
construction of our unions, we now have:

C ∩D1 = {A,B,C,O,R, R̄,Q, Q̄, S}

C ∩D2 = {A,B,C,O,R, R̄,Q, Q̄, T}

These sets only differ in the last two elements S and T . Recall that we assumed all of these points
are distinct. So, by Corollary 2.7, any 2 conics that intersect at 8 points must intersect at the
same 9th point (and cubics can intersect at at most 9 points). Thus S = T and associativity holds.

Note that, in this proof, it was crucial that all points were distinct. This is very hard to prove
without this assumption so Reid uses continuity to“nudge things until it all works” in his proof.

Proof by Continuity: We handwaved this a lot but here is a list of some of the main points:

• k is a subfield of C so if we prove that associativity holds for all points in C, we prove that
it holds for all points in k.

• A+B is a continuous function of A,B.

• Given A,B,C on the curve, we have A′, B′, C ′ arbitrarily close to A,B,C making distinct
the things we want distinct ({A, ..., S, T}).

• Reid builds two continuous functions f, g (such that f = g implies associativity) and argues
that there is a dense subset in which f = g.

It would be much better to prove associativity using multiplicity arguments, instead.

3 Final Remarks from Fernando

Recall that the cubic y2 = x(x− 1)(x− λ) has no rational parameterization. We know that, for a
circle, there exists a rational parameterization (x(t), y(t)) as well as an irrational parameterization
(cosθ, sinθ). So we ask: is there a pair of functions (f(z), g(z)) to parameterize our cubic? There
is f(z1 + z2), a rational function of f(z1) and f(z2). When you unpack this addition law, you see
this is related to the group law we just defined.
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