Problem Day 1

Ethan Pullen

February 19 2020

1 Problem 1.6

Let k be a field with at least 4 elements, and $C : (XZ = Y^2)$ prove that if Q(X, Y, Z) is a quadratic form which vanishes on C then $Q = \lambda(XZ - Y^2)$

1.1 Proof

Let Q(X, Y, Z) be a quadratic such that it vanishes on $C : (XZ = Y^2)$. We can write out the equation for $Q = aX^2 + 2bXY + cY^2 + 2dXZ + 2eYZ + fZ^2$. We can now move the 2dXZ with part of cY^2 to achieve,

 $Q = 2d(XZ - Y^{2}) + aX^{2} + 2bXY + (c - 2d)Y^{2} + 2eYZ + fZ^{2}$

Since $C: (XZ = Y^2), Q[0:0:1] = 0 = f$, so f = 0. We can now rewrite Q,

$$Q = 2d(XZ - Y^{2}) + aX^{2} + 2bXY + (c - 2d)Y^{2} + 2eYZ$$

we can use the points $[1: y: y^2] \in C$. Since Q vanishes over C, $Q[1: y: y^2] = 0 = a + 2by + (c - 2d)y^2 + 2ey^3$. We are left with a cubic, but since k is a field with at least 4 elements, there are at least 4 zeroes of our cubic. The only way for that to happen is for all of the coefficients to be 0. We can now write,

 $Q = 2d(XZ - Y^{2}) + 0 * X^{2} + 2bXY + 0 * Y^{2} + 0 * YZ = 2d(XZ - Y^{2})$

Thus, $Q = \lambda(XZ = Y^2)$ where $\lambda = 2d$.

2 Problem 1.7

In R^3 , consider the two planes A: (Z = 1) and B: (X = 1); a line through 0 meeting A in (x, y, 1) meets B in $(1, \frac{y}{x}, \frac{1}{x})$. Consider the map $\phi: A \to B$ defined by $(x, y) \mapsto (y' = \frac{y}{x}, z' = \frac{1}{x})$; what is the image under ϕ of

2.1 the line ax = y + b

The line ax = y+b is a pencil of parallel lines each with slope a. We will start by looking at where ϕ sends a line. Our mapping sends $(x, y) \mapsto (y' = \frac{y}{x}, z' = \frac{1}{x})$. We can solve our equation of a line for $\frac{y}{x}$ by subtracting b and dividing by x, $\frac{y}{x} = a + \frac{b}{x}$. So, $\phi : ax = y + b \mapsto (1, a - \frac{b}{x}, \frac{1}{x})$. $(1, a - \frac{b}{x}, \frac{1}{x})$ is a line with the equation y = a - bz. Since b can vary, our group of parallel lines in A are now a pencil of lines on the x = 1 plane with varying slopes that all go through (1, a, 0).

2.2 circles $(x - 1)^2 + y^2 = c$ for variable c

We break this into 3 cases on c. Case c > 1:

If c > 1, ϕ sends our circle equation to $(1, \frac{\pm\sqrt{c-(x-1)^2}}{x}, \frac{1}{x})$. We will let $\alpha = c-1 > 0$, so we have $(1, \pm\sqrt{\frac{\alpha}{x^2} + \frac{2}{x}} - 1, \frac{1}{x})$. We can now write an equation, $y = \pm\sqrt{\alpha z^2 + 2z + 1}$, so $y^2 - \alpha z^2 - 2z + 1 = 0$. This is the equation of a hyperbola since α is positive. Case c = 1:

If c = 1, ϕ sends our circle equation to $\left(1, \frac{\pm\sqrt{c-(x-1)^2}}{x}, \frac{1}{x}\right) = \left(1, \frac{\pm\sqrt{1-(x-1)^2}}{x}, \frac{1}{x}\right) = \left(1, \frac{\sqrt{2x-x^2}}{x}, \frac{1}{x}\right) = \left(1, \pm\sqrt{\frac{2}{x}-1}, \frac{1}{x}\right)$. So, $y = \pm\sqrt{2z-1}$ giving us a parabola $y^2 - 2z + 1 = 0$. Case c < 1:

If c < 1, ϕ sends our circle equation to $(1, \frac{\pm\sqrt{c-(x-1)^2}}{x}, \frac{1}{x})$. We will let $\alpha = -1+c > 0$, so we have $(1, \pm\sqrt{-\frac{\alpha}{x^2} + \frac{2}{x}} - 1, \frac{1}{x})$. We can now write an equation, $y = \pm\sqrt{-\alpha z^2 + 2z + 1}$, so $y^2 + \alpha z^2 - 2z + 1 = 0$. This is the equation of an ellipse since α is positive.

3 Problem 1.8

3.1 Let $P_1, P_2, P_3, P_4 \in P^2$ with no 3 collinear. Prove that there is a unique coordinate system in which the 4 points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1,1,1).

We want to define a linear transformation M such that:

 $(1,0,0)\mapsto P_1$

 $(0,1,0)\mapsto P_2$

 $(0,0,1)\mapsto P_3$

 $(1,1,1) \mapsto P_4$ Since $P_1, P_2, P_3, P_4 \in P^2$ we are allowed to scale them so that $P_1 + P_2 + P_3 = P_4$ No 3 points are collinear, so P_1, P_2, P_3 span R^3 which means there is some α, β, γ with $\alpha P_1 + \beta P_2 + \gamma P_3 = P_4$. So we want M to map each standard unit to its scaled version in P^2 .

 $M(1,0,0) = \alpha P_1, M(0,1,0) = \beta P_2, M(0,0,1) = \gamma P_3$

This will force $M(1,1,1) = P_4$. Thus our transformation to the coordinate system is simply M^{-1} .

3.2 Find all conics passing through $P_1...P_5$, where $P_5 = (x, y, z)$ is some other point

Let C be our conic, $C: aX^2 + 2bXY + cY^2 + 2dXZ + 2eYZ + fZ^2 = 0$. Since P_1, P_2, P_3 are on the curve, the points (1, 0, 0), (0, 1, 0), (0, 0, 1) are zeroes on the conic, this means a, c, f = 0. Now we have 2bXY + 2dXZ + 2eYZ = 0. P_4 is also on the curve, so (1, 1, 1) is also a zero, thus b + d + e = 0. Using P_5 , bxy + dxy + eyz = 0. We now have 2 equations for 3 variables, which means we have one solution in P^2 .

3.3 Corollary 1.10

If $P_1...P_5 \in P^2$ are distinct points such that no 4 are collinear, then there exists at most one conic through $P_1...P_5$

We have shown that there is a unique way to move our coordinates to our new space and also that each time we add a fifth point, we define a single conic. Suppose there were 2 conics that go through all 5 points. This means there are 2 distinct ways to convert our coordinates, and the transformation would not be unique, thus it is impossible for 2 conics to exist.

4 Problem 1.10 and 1.11

Two forms on an algebraically closed field share a root if and only if Sylvester's Determinant is 0.

α_0	α_1	α_2		α_n	0	0	 0
0	α_0	α_1	α_2		α_n	0	 0
0	0		0	α_0	α_1	α_2	 α_n
β_0	β_1	β_2		β_m	0	0	 0
0	β_0	α_1	β_2		β_m	0	 0
0	0		0	β_0	β_1	β_2	 β_m

4.1 Generalized Proof

Let A be an n degree form and B be an m degree form. We will assume A and B share a root $(\alpha : \gamma)$. There will be m variations of A $(U^x V^y A \text{ with } x + y = m)$ and n variations of B $(U^x V^y B \text{ with } x + y = n)$. Since A and B both have root $(\alpha : \gamma)$, any multiple of A and B will also have this root. Also, since all rows of Sylvester's Determinant are variations of A and B, all linear combinations will also share the root. Let $(\theta : \phi) \neq (\alpha : \gamma)$. Consider K, the m + n degree form whose only root is $(\theta : \phi)$. Since this form doesn't share a root with A and B, it is not possible to create a linear combination to create K. This means the matrix form of Sylvester's Determinant does not span m + n degree forms, so it is not invertible and thus, the determinant is 0. We will now assume that Sylvester's Determinant is 0 and show that A and B must share a root. We know that some non-trivial linear combination of the rows of the determinant are 0.

$$a_1 U^{m-1} A + a_2 U^{m-2} V A + \dots + a_m V^{m-1} A - b_1 U^{n-1} B - \dots - b_n V^{-1} n B = 0$$

We can now do some factoring,

$$A(a_1U^{m-1} + a_2U^{m-2}V + \dots + a_mV^{m-1}) - B(b_1U^{n-1} + \dots + b_nV^{n)-1} = 0$$

Notice that $(a_1U^{m-1} + a_2U^{m-2}V + ... + a_mV^{m-1})$ is just a form of degree m-1and $(b_1U^{n-1} + ... + b_nV^{n-1})$ is a form of degree n-1. We now have $A\pi = B\tau$ where π is a form of degree m-1 and τ is a form of degree n-1. Our forms are in k[U, V], so we have unique factorization. Since $deg\pi < degB$ there is at least one root of B that is not a root of π or has a higher multiplicity in B than π . Since $A\pi = B\tau$, it must also be a root of A, thus A and B share a root.