Problem Day 1

Ethan Pullen

February 192020

1 Problem 1.6

Let k be a field with at least 4 elements, and $C:\left(X Z=Y^{2}\right)$ prove that if $Q(X, Y, Z)$ is a quadratic form which vanishes on C then $Q=\lambda\left(X Z-Y^{2}\right)$

1.1 Proof

Let $Q(X, Y, Z)$ be a quadratic such that it vanishes on $C:\left(X Z=Y^{2}\right)$. We can write out the equation for $Q=a X^{2}+2 b X Y+c Y^{2}+2 d X Z+2 e Y Z+f Z^{2}$. We can now move the $2 d X Z$ with part of $c Y^{2}$ to achieve,

$$
Q=2 d\left(X Z-Y^{2}\right)+a X^{2}+2 b X Y+(c-2 d) Y^{2}+2 e Y Z+f Z^{2}
$$

Since $C:\left(X Z=Y^{2}\right), Q[0: 0: 1]=0=f$, so $f=0$. We can now rewrite Q,

$$
Q=2 d\left(X Z-Y^{2}\right)+a X^{2}+2 b X Y+(c-2 d) Y^{2}+2 e Y Z
$$

we can use the points $\left[1: y: y^{2}\right] \in C$. Since Q vanishes over $C, Q\left[1: y: y^{2}\right]=$ $0=a+2 b y+(c-2 d) y^{2}+2 e y^{3}$. We are left with a cubic, but since k is a field with at least 4 elements, there are at least 4 zeroes of our cubic. The only way for that to happen is for all of the coefficients to be 0 . We can now write,

$$
Q=2 d\left(X Z-Y^{2}\right)+0 * X^{2}+2 b X Y+0 * Y^{2}+0 * Y Z=2 d\left(X Z-Y^{2}\right)
$$

Thus, $Q=\lambda\left(X Z=Y^{2}\right)$ where $\lambda=2 d$.

2 Problem 1.7

In R^{3}, consider the two planes $A:(Z=1)$ and $B:(X=1)$; a line through 0 meeting A in $(x, y, 1)$ meets B in $\left(1, \frac{y}{x}, \frac{1}{x}\right)$. Consider the map $\phi: A \rightarrow B$ defined by $(x, y) \mapsto\left(y^{\prime}=\frac{y}{x}, z^{\prime}=\frac{1}{x}\right)$; what is the image under ϕ of

2.1 the line $a x=y+b$

The line $a x=y+b$ is a pencil of parallel lines each with slope a. We will start by looking at where ϕ sends a line. Our mapping sends $(x, y) \mapsto\left(y^{\prime}=\frac{y}{x}, z^{\prime}=\frac{1}{x}\right)$. We can solve our equation of a line for $\frac{y}{x}$ by subtracting b and dividing by x, $\frac{y}{x}=a+\frac{b}{x}$. So, $\phi: a x=y+b \mapsto\left(1, a-\frac{b}{x}, \frac{1}{x}\right) .\left(1, a-\frac{b}{x}, \frac{1}{x}\right)$ is a line with the equation $y=a-b z$. Since b can vary, our group of parallel lines in A are now a pencil of lines on the $x=1$ plane with varying slopes that all go through (1, a, 0).

$2.2 \quad \operatorname{circles}(x-1)^{2}+y^{2}=c$ for variable \mathbf{c}

We break this into 3 cases on c.
Case $c>1$:
If $c>1, \phi$ sends our circle equation to $\left(1, \frac{ \pm \sqrt{c-(x-1)^{2}}}{x}, \frac{1}{x}\right)$. We will let $\alpha=$ $c-1>0$, so we have $\left(1, \pm \sqrt{\frac{\alpha}{x^{2}}+\frac{2}{x}-1}, \frac{1}{x}\right)$. We can now write an equation, $y= \pm \sqrt{\alpha z^{2}+2 z+1}$, so $y^{2}-\alpha z^{2}-2 z+1=0$. This is the equation of a hyperbola since α is positive.
Case $c=1$:
If $c=1, \phi$ sends our circle equation to $\left(1, \frac{ \pm \sqrt{c-(x-1)^{2}}}{x}, \frac{1}{x}\right)=\left(1, \frac{ \pm \sqrt{1-(x-1)^{2}}}{x}, \frac{1}{x}\right)=$ $\left(1, \frac{\sqrt{2 x-x^{2}}}{x}, \frac{1}{x}\right)=\left(1, \pm \sqrt{\frac{2}{x}-1}, \frac{1}{x}\right)$. So, $y= \pm \sqrt{2 z-1}$ giving us a parabola $y^{2}-2 z+1=0$.
Case $c<1$:
If $c<1, \phi$ sends our circle equation to $\left(1, \frac{ \pm \sqrt{c-(x-1)^{2}}}{x}, \frac{1}{x}\right)$. We will let $\alpha=$ $-1+c>0$, so we have $\left(1, \pm \sqrt{-\frac{\alpha}{x^{2}}+\frac{2}{x}-1}, \frac{1}{x}\right)$. We can now write an equation, $y= \pm \sqrt{-\alpha z^{2}+2 z+1}$, so $y^{2}+\alpha z^{2}-2 z+1=0$. This is the equation of an ellipse since α is positive.

3 Problem 1.8

3.1 Let $P_{1}, P_{2}, P_{3}, P_{4} \in P^{2}$ with no 3 collinear. Prove that there is a unique coordinate system in which the 4 points are $(1,0,0),(0,1,0),(0,0,1)$ and $(1,1,1)$.
We want to define a linear transformation M such that:
$(1,0,0) \mapsto P_{1}$
$(0,1,0) \mapsto P_{2}$
$(0,0,1) \mapsto P_{3}$
$(1,1,1) \mapsto P_{4}$ Since $P_{1}, P_{2}, P_{3}, P_{4} \in P^{2}$ we are allowed to scale them so that $P_{1}+P_{2}+P_{3}=P_{4}$ No 3 points are collinear, so P_{1}, P_{2}, P_{3} span R^{3} which means there is some α, β, γ with $\alpha P_{1}+\beta P_{2}+\gamma P_{3}=P_{4}$. So we want M to map each standard unit to its scaled version in P^{2}.
$M(1,0,0)=\alpha P_{1}, M(0,1,0)=\beta P_{2}, M(0,0,1)=\gamma P_{3}$
This will force $M(1,1,1)=P_{4}$. Thus our transformation to the coordinate system is simply M^{-1}.

3.2 Find all conics passing through $P_{1} \ldots P_{5}$, where $P_{5}=$ (x, y, z) is some other point

Let C be our conic, $C: a X^{2}+2 b X Y+c Y^{2}+2 d X Z+2 e Y Z+f Z^{2}=0$. Since P_{1}, P_{2}, P_{3} are on the curve, the points $(1,0,0),(0,1,0),(0,0,1)$ are zeroes on the conic, this means $a, c, f=0$. Now we have $2 b X Y+2 d X Z+2 e Y Z=0 . P_{4}$ is also on the curve, so $(1,1,1)$ is also a zero, thus $b+d+e=0$. Using P_{5}, $b x y+d x y+e y z=0$. We now have 2 equations for 3 variables, which means we have one solution in P^{2}.

3.3 Corollary 1.10

If $P_{1} \ldots P_{5} \in P^{2}$ are distinct points such that no 4 are collinear, then there exists at most one conic through $P_{1} \ldots P_{5}$
We have shown that there is a unique way to move our coordinates to our new space and also that each time we add a fifth point, we define a single conic. Suppose there were 2 conics that go through all 5 points. This means there are 2 distinct ways to convert our coordinates, and the transformation would not be unique, thus it is impossible for 2 conics to exist.

4 Problem 1.10 and 1.11

Two forms on an algebraically closed field share a root if and only if Sylvester's Determinant is 0 .

$$
\left[\begin{array}{ccccccccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} & 0 & 0 & \ldots & 0 \\
0 & \alpha_{0} & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} & 0 & \ldots & 0 \\
\ldots & \ldots
\end{array}\right] \ldots \ldots 9 .
$$

4.1 Generalized Proof

Let A be an n degree form and B be an m degree form. We will assume A and B share a root $(\alpha: \gamma)$. There will be m variations of $\mathrm{A}\left(U^{x} V^{y} A\right.$ with $\left.x+y=m\right)$ and n variations of $\mathrm{B}\left(U^{x} V^{y} B\right.$ with $\left.x+y=n\right)$. Since A and B both have root $(\alpha: \gamma)$, any multiple of A and B will also have this root. Also, since all rows of Sylvester's Determinant are variations of A and B, all linear combinations will also share the root. Let $(\theta: \phi) \neq(\alpha: \gamma)$. Consider K, the $m+n$ degree form whose only root is $(\theta: \phi)$. Since this form doesn't share a root with A and B , it is not possible to create a linear combination to create K . This means the matrix form of Sylvester's Determinant does not span $m+n$ degree forms, so it is not invertible and thus, the determinant is 0 . We will now assume that Sylvester's Determinant is 0 and show that A and B must share a root. We know that some non-trivial linear combination of the rows of the determinant are 0 .

$$
a_{1} U^{m-1} A+a_{2} U^{m-2} V A+\ldots+a_{m} V^{m-1} A-b_{1} U^{n-1} B-\ldots-b_{n} V^{-1} n B=0
$$

We can now do some factoring,

$$
A\left(a_{1} U^{m-1}+a_{2} U^{m-2} V+\ldots+a_{m} V^{m-1}\right)-B\left(b_{1} U^{n-1}+\ldots+b_{n} V^{n)-1}=0\right.
$$

Notice that $\left(a_{1} U^{m-1}+a_{2} U^{m-2} V+\ldots+a_{m} V^{m-1}\right)$ is just a form of degree $m-1$ and $\left(b_{1} U^{n-1}+\ldots+b_{n} V^{n-1}\right)$ is a form of degree $n-1$. We now have $A \pi=B \tau$ where π is a form of degree $m-1$ and τ is a form of degree $n-1$. Our forms are in $k[U, V]$, so we have unique factorization. Since $\operatorname{deg} \pi<\operatorname{deg} B$ there is at least one root of B that is not a root of π or has a higher multiplicity in B than π. Since $A \pi=B \tau$, it must also be a root of A, thus A and B share a root.

