February 17th: The Intersection of Conics and a Pencil of Conics

Lily Santonelli

Today's lecture covers sections 1.12 to 1.14 in Miles Reid's book Undergraduate Algebraic Geometry. These sections focus on the intersection of conics as well as a pencil of conics. In these notes, we will investigate these topics through definitions, propositions, and examples.

Section 1.12: Intersection of Conics

Given 4 points P_{1}, \ldots, P_{4} in $\mathbb{P} 2$, under the condition that $S 2\left(P_{1} \ldots P_{4}\right)$ is a 2-dimensional vector space. Recall that S 2 is the space of all conics of quadratic form on \mathbb{R}^{3}, which is essentially the set of 3 x 3 symmetric matrices. Then, by choosing a basis Q_{1}, Q_{2} for $S 2\left(P_{1} \ldots P_{4}\right)$, we are given two conics C_{1} and C_{2} such that $C_{1} \cap C_{2}=\left\{P_{1} \ldots P_{4}\right\}$.

Figure 1: 4 Points of Intersection

Reid's Examples:

Section 1.13: A Pencil of Conics

In section 1.13, the main focus is degenerate conics in a pencil. Let's begin by defining a pencil of conics.

Definition: A Pencil of Conics

A family of the form $\mathrm{C}(\lambda, \mu)=\left(\lambda Q_{1}+\mu Q_{2}=0\right)$. Each element is a plane curve and the elements are parameterized by \mathbb{P}^{1}. We can think of the ratio $(\lambda: \mu)$ as a point in \mathbb{P}^{1}.

As one might expect, for special values of λ and μ the conic $\mathrm{C}(\lambda, \mu)$ is degenerate. Let's consider $\operatorname{det} \mathrm{Q}$ for the determinant of the symmetric 3 x 3 matrix corresponding to the quadratic form Q . When $\operatorname{det} \mathrm{Q}=0$, the conic is degenerate. Then, it is clear that:

$$
\mathrm{C}(\lambda, \mu) \text { is degenerate } \Longleftrightarrow \operatorname{det}\left(\lambda Q_{1}+\mu Q_{2}\right)=0 .
$$

The elements Q1 and Q2 can also be written as 3 x 3 symmetric matrices. Below this can be expressed as:

$$
\mathrm{F}(\lambda, \mu)=\operatorname{det}\left|\lambda\left[\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right]+\mu\left[\begin{array}{lll}
a^{\prime} & b^{\prime} & d^{\prime} \\
b^{\prime} & c^{\prime} & e^{\prime} \\
d^{\prime} & e^{\prime} & f^{\prime}
\end{array}\right]\right|=0
$$

Recall that we write $Q_{1}=a X^{2}+2 b X Y+\ldots+f Z^{2}$ and Q_{2} is of similar form, but uses coefficients $a^{\prime}, b^{\prime}, \ldots, f^{\prime}$; note that these are the entries to each of the matrices. In addition, $\mathrm{F}(\lambda, \mu)$ is a homogeneous degree 3 form in λ and μ. By applying what we learned in Section 1.8 to F , we can derive the following proposition:

Proposition:

Suppose $C(\lambda, \mu)$ is a pencil of conics in $\mathbb{P}^{2}(K)$, with at least one non-degenerate conic. Then the pencil has at most 3 degenerate conics. If $K=\mathbb{R}$, then the pencil has at least one degenerate conic.

Proof:

A cubic form has at least 3 roots by Section 1.8. In addition, over R, it must have at least one root.

Example 1:

Suppose that we start from the pencil of conics generated by the circle, $Q_{1}: X^{2}+Y^{2}-Z^{2}=0$, and the hyperbola, $Q_{2}: X^{2}-Y^{2}+Z^{2}=0$. Then, we can derive the following: $(\lambda+\mu) X^{2}+$ $(\lambda-\mu) Y^{2}+(\mu-\lambda) Z^{2}=0$. Consider when $\lambda=2$ and $\mu=1$ so we have $3 X^{2}+Y^{2}-Z^{2}=0$.

This can be rewritten as $3 X^{2}+Y^{2}=1$. No consider when $\lambda=1$ and $\mu=2$ so we derive the equation $3 X^{2}-Y^{2}+Z^{2}=0$. Notice that when $\lambda=\mu$, we are given the y axis so $X^{2}=0$.

Now let's compute $F(\lambda, \mu)$. Given the equations for Q_{1} and Q_{2} above, $F(\lambda, \mu)$ can be written as the following:

$$
\begin{aligned}
\mathrm{F}(\lambda, \mu)=\operatorname{det} \left\lvert\, \lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\right. & \left.+\mu\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]|=\operatorname{det}|\left[\begin{array}{ccc}
\lambda+\mu & 0 & 0 \\
0 & \lambda-\mu & 0 \\
0 & 0 & \mu-\lambda
\end{array}\right] \right\rvert\, \\
& =(\lambda+\mu)(\lambda-\mu)(\mu-\lambda) \\
& =-(\lambda-\mu)^{2}(\lambda+\mu)
\end{aligned}
$$

Consider when $\lambda=1$ and $\mu=-1$. Then, we have $(\lambda-\mu)^{2}(\lambda+\mu)=(1-(-1))^{2}(1+(-1))=0$.

Finally, let's investigate the procedure for finding the points of intersection. First, consider starting from the pencil of conics generated by Q_{1}, Q_{2} in affine form such that $Q_{1}=$ $Y^{2}+r Y+s X+t$ and $Q_{2}=Y-X^{2}$. We will try to find the points $P_{1} \ldots P_{4}$ of intersection. Let's plug in $Y=X^{2}$ into Q_{1}. Then, Q_{1} can be rewritten as $X^{4}+r X^{2}+s X+t$. This equation is referred to as a "Depressed Quartic." This shows that we can convert every generic quartic into a depressed quartic following a change of variable; this allows us to recover the roots of the original quartic more easily using the depressed quartic.

In order to find the intersection points we must (1) find the 3 ratios $(\lambda: \mu)$ for which $C(\lambda: \mu)$ are degenerate conics, (2) Separate out 2 of the degenerate conics into pairs of lines and (3) the four points P_{i} are the points of intersection of the lines. When separating out the 2 of the degenerate conics into pairs of line, we get three values of μ / λ for which the conic $\lambda Q_{1}+\mu Q_{2}$ breaks up as line pairs. The cubic equation whose roots are these 3 values is called the "auxiliary cubic" associated with the quartic.

