
Algebraic geometry: Feb. 7
Simon Xu

Today’s lecture covers essentially the first three sections in Reid’s book. We will consider
some of the simplest algebraic curves. The simplest of all is a line. The first question we need to
address is that where should our line live? For now, we want to consider lines in the affine plane.

Definition 1. Let k be field. Then the affine plane over k, denoted as A2, is the set {(x, y) : x, y ∈
k}.

For our purpose today, k will always be R. The set of R-points in A2 in denoted as A2(R), and
this is merely another way of saying R2. A line in A2 is defined by an equation of the form

ax+ by + c = 0, a, b, c ∈ R and a, b not both 0.

How do we check that this equation actually define a line? The idea is that a line should look like
an axis. So consider a parameter t and set y = t (this assumes that a 6= 0; if a = 0, then instead
let x = t). Solving for x, we get

x = − 1

a(bt+ x)
.

Therefore, every points on the curve traced out by this equation can be described by the following
pair:

(x, y) =

(
− 1

a(bt+ c)
, t

)
.

There are two ways of interpreting this pair of coordinates. The first interpretation is that this
gives a mapping from the t-axis to the line. In fact, it’s easy to see that it’s an isomorphism with
inverse given by (a, b) 7→ b. Another way to look at this situation is that this line can be viewed as
a point in the affine plane over the function field R(t).

It’s also worth noticing that the equation defining a line need not to be of degree 1; we can
simply take the original equation and take it to n-th power to get a new equation. But the set of
zeros of the new equations has to be the same as the set of zeros of the original equation. Thus,
they trace out the same line. A perhaps more interesting way is that we could multiply the original
polynomial by some polynomial with no real roots. The product clearly will trace out the same
line, and the degree of the new polynomial is greater than 1. This is a delicate issue that we will
explore more in the future.

The next simplest curve is a circle. Consider the circle given by the equation

x2 + y2 = 1.

This circle has a rational point (−1, 0). Now we can start to draw lines from (−1, 0) that intersect
the circle. They will also intersect y-axis at some point. Call the point (0, t). The point this
line intersect with the circle will be a function of t, so we can call it x(t), y(t). To see what the
coordinates actually are, we can work out the algebra: the equation of the line is y = tx + t, and
to find (x(t), y(t)), we simply plug it back into the circle equation to get

x2 + (tx+ t)2 = 1

x2 + t2x2 + 2t2x+ t2 − 1 = 0

(1 + t2)x2 + 2t2x+ t2 − 1 = 0.
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Thus, we need to find the roots of some quadratic polynomial. We already know one of the roots:
since the line also intersects the circle at the point (−1, 0), then one of the roots has to be x = −1.

Now Vieta’s formula tells us that product of two roots is given by c/a, so −x(t) = t2−1
1+t2

. Then we
have

(x(t), y(t)) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

Now it seems that we again have a function from the t-axis to the circle. But note that the map is

Figure 1: Parametrizing a circle.

not onto (it’s one-to-one since t = y(t)
1+x(t)): the point (−1, 0) is not in the image of this map. This

is expected, if the line intersects at (−1, 0) twice, then we would expect the line to be vertical, or
in some sense, to have infinite slope. Therefore, we really want to map ∞ to (−1, 0). Moreover, if
we let t→∞, we get

lim
t→∞

(x(t), y(t)) = lim
t→∞

(
1− t2

1 + t2
,

2t

1 + t2

)
= (−1, 0).

This matches well with out intuition. Another issue is that for some field (such as C) we can have
1 + t2 = 0, which means that the function is not defined at some points on the t-axis. However,
this parametrization says that a circle is in fact pretty close to be a line. Moreover, observe that
the parametrization is defined over Q, which means plugging any rational number t will produce
a rational point on the circle. Since finding rational points on the circle is equivalent to finding
Pythagorean triples, this parametrization offers us a way to find all Pythagorean triples. We will
make a new definition.

Definition 2. If a curve can be parameterized by rational functions (i.e. ratios of polynomials),
we call it a rational curve.

In particular, our circle is in fact a rational curve. Now in general, if we replace the equation
with any degree 2 equation, fix a point on the curve and start to draw lines through it, we can
use a similar method to parametrize this general curve. One would expect this method to work
since plugging in a degree 1 equation of a line into the degree two equation will produce again a
quadratic equation and everything should proceed in a similar way. So, unless the case is really
strange, we expect to be able to parametrize curves traced our by degree 2 polynomials.
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As an example, consider the curved traced out by

2x2 + y2 = 5.

It’s an ellipse, and it contains the point (0,
√

5). Using this point, we indeed get a parametrization

(x(t), y(t)) =

(
10t

5 + 2t2
,

√
5(2t2 − 5)

5 + 2t2

)
.

Note that this time the rational functions are no longer defined over Q, so we cannot find rational
points on this curve via the parametrization. In fact, we don’t even know if there’s any rational
points on the curve by looking at the parametrization. The answer in fact is no, and can be gotten
by doing modular arithmetic mod 5: suppose x = a/c and y = b/c. Then we have the equation
2a2 + b2 = 5c2. We can assume that a, b, c have no common factors, but then this forces a and b to
be not both divisible by 5. Then all we need to do is to check all the cases in Z/5Z, and one quickly
realizes that this equation has no non-zero solution mod 5. Then it cannot have any non-trivial
solution in Z to begin with. The interesting (and very hard) number theory question is that if we
have non-trivial solutions modulo every prime, are we guaranteed to find a non-trivial solution for
the original equation. But let’s remind ourselves that this is a geometry class and we shall resist
the temptation to go any further on this topic.

Finally, let’s consider the conics. Let

q(x, y) = ax2 + bxy + cy2 + dx+ ey + f.

What are some of the possibilities? We can get

1. A parabola (e.g. x2 − y = 0);

2. a circle (e.g. x2 + y2 = 1) or an ellipse (e.g. 2x2 + y2 = 1);

3. a hyperbola (e.g. x2 − y2 = 1);

Figure 2: Non-degenerate Conics. Picture credit to Pbroks13 from Wikipedia.

Of course, there are always degenerate cases:

1. A single point (e.g. x2 + y2 = 0);
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2. a single line (e.g. (x− y)2 = 0);

3. two lines (e.g. x2 − y2 = 0);

4. no solutions (e.g. x2 + y2 + 1 = 0);

5. the entire plane (e.g. 0 = 0)

The claim is that these all are the cases. There are at least two ways of proving this: the brute
force method and a linear algebra method.

The brute force method. Suppose a 6= 0. We can first divide through by a to get

x2 +
b

a
xy +

c

a
y2 +

d

a
x+

e

a
y +

f

a
= 0.

The it’s just a matter of completing squares:

x2 +
b

a
xy +

c

a
y2 +

d

a
x+

e

a
y +

f

a
= 0

x2 +
b

a
xy +

b2

4a2
y2 +

c

a
y2 +

d

a
x+

e

a
y +

f

a
= 0

(x+
b

2a
y)2 + (

c

a
− b2

4a2
)y2 +

d

a
(x+

b

2a
) + (

e

a
− db

2a2
)y +

f

a
= 0.

Setting X = x+ b
2ay, we got a new equation of the form

X2 +By2 +DX + Ey + F = 0.

Now if B = 0, we are done: if F 6= 0, we get a parabola, and if F = 0, we get some degeneracy. If
B 6= 0, then completing the square again, we can get it into the form

αu2 + βv2 + c = 0.

From here we can get the full classification. This is quite unpleasant and not very insightful.
The linear algebra method. We first observe that

ax2 + bxy + cy2 =
[
x y

] [ a b/2
b/2 c

] [
x
y

]
.

Thus, the original equation can be written as

[
x y

] [ a b/2
b/2 c

] [
x
y

]
+
[
d e

] [x
y

]
+ f = 0.

A theorem from linear algebra says that any symmetric matrix can be diagonalized via orthogonal

matrices; in other words,

[
a b/2
b/2 c

]
= S−1DS, where D is a diagonal matrix of the form

[
A 0
0 B

]
and S−1 = ST . This change of basis amounts to a change of variable and we end up with

AX2 +BY 2 + stuff = 0,

where stuff is of degree 1. From here one can also complete the classification of conics. In fact, one
can show that the determinant of the matrix is what determines which conic section this equation
produces (as long as you are not in the degenerate case).
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If we work over the projective plane, the non-degenerate conics are all the same. One could
then think about all the conics, and one see that these conics can be specified by the coefficients
of the equations up to some scaling. Then all the conics can be viewed as some subsets of higher
dimensional spaces, and one could ask interesting questions there.

The class ends with a challenge. Consider the rational curve parametrized by t 7→ (t, t2, t3) in
A3. This is called the twisted cubic. It’s in fact non-planar. The challenge is to find the polynomials
that cut out this curve.
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