MA357, Spring 2020 - Problem Set 5 Solutions

I. NTG, Exercise 4.7.4I.

The hint suggests looking at the equation mod 7. Indeed, if

$$
x^{2}-7 y^{3}+21 z^{5}=3
$$

then we must have $x^{2} \equiv 3(\bmod 7)$. Squaring $0, \pm 1, \pm 2, \pm 3$ gives $0,1,4,2$. It follows that 3 is not a square $\bmod 7$, and therefore no such x exists, so that the original equation has no solutions.
2. NTG, Exercise 4.7.42. (Experiment first!)

Trying the first four values of n (on a computer, I hope) shows that they are all divisible by 3 .

```
gp > for(n=1,4,print(factor(2^(2^n)+5)))
    [3, 2]
    [3, 1; 7, 1]
    [3, 2; 29, 1]
    [3, 1; 7, 1; 3121, 1]
```

So let's work mod 3 . Notice that $2^{2} \equiv 1(\bmod 3)$, and therefore $2^{2^{n}} \equiv 1(\bmod 3)$ for all $n \geqslant 1$. Therefore

$$
2^{2^{n}}+5 \equiv 1+2 \equiv 0 \quad(\bmod 3)
$$

Since $2^{2^{n}}+5 \geqslant 5>3$, it follows that $2^{2^{n}}+5$ is composite.
I found it hard to guess which modulus to work with just from looking at the formula.
3. Do any numbers satisfy the equation $\varphi(n)=2 n$?

No, because $\varphi(\mathrm{n})$ counts how many of the numbers between 1 and n are relatively prime to n, and there are certainly no more than n of them!
4. Do any numbers satisfy the equation $\varphi(n)=n / 2$?

If n is odd, it is clearly not possible, since $\mathrm{n} / 2$ is not an integer. It's easy to see that any power of two does satisfy the equation, since $\operatorname{gcd}\left(n, 2^{a}\right)=1$ if and only if n is odd.

For the general case, write $n=2^{a} m$ with m odd and $a>0$. Then m is one of the $n / 2$ odd numbers that are less than n, and therefore $\varphi(n)<n / 2$. So the upshot is that $\varphi(n)=n / 2$ if and only if $n=2^{a}$ for some $a \geqslant 1$.

Yes, one can also do this using more powerful results (multiplicativity, or even the formula for $\varphi(n)$ in terms of the factorization of n.)

5. NTG, Exercise 5.6.2I.

If you read the text, you know that a is a zero divisor in $\mathbb{Z} / 35 \mathbb{Z}$ if and only if $\operatorname{gcd}(a, 35)>$ 1 . So the zero divisors in $\mathbb{Z} / 35 \mathbb{Z}$ are the classes of

$$
5,7,10,14,15,20,21,25,28,30
$$

The units are all the others. The pairs $\left(a, a^{-1}\right)$ are

$$
\begin{gathered}
(1,1),(2,18),(3,12),(4,9),(6,6),(8,22),(11,16),(13,27) \\
(17,33),(19,24),(23,32),(26,31),(29,29),(34,34) .
\end{gathered}
$$

Notice that we have four cases of $a=a^{-1}$.
For $\mathbb{Z} / 11 \mathbb{Z}$, it's easier: there are no zero divisors, and every nonzero element is a unit. The $\left.\left(a, a^{-1}\right)\right)$ pairs are

$$
(1,1),(2,6),(3,4),(5,9),(7,8),(10,10)
$$

Since 11 is prime $a=a^{-1}$ can only happen if $a= \pm 1$.
6. In the previous assignment you showed that if $n>4$ is not prime then $(n-1)!\equiv 0$ $(\bmod n)$. This problem shows what happens when n is prime.

Let p be a prime. Use the fact that every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$has an inverse $(\bmod p)$ to show that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

This is called Wilson's Theorem.
The first thing we need to show is that the only numbers that are their own inverses mod p are 1 and -1 . In fact, if x is its own inverse, then $x^{2} \equiv 1(\bmod p)$, which means that $p \mid\left(x^{2}-1\right)$, and so that p divides the product $(x-1)(x+1)$. But if a prime divides a product it must divide one of the factors, so either $p \mid(x-1)$ or $p \mid(x+1)$. The first of these says $x \equiv 1(\bmod p)$, and the second says $x \equiv-1(\bmod p)$. So only 1 and -1 are their own inverses.

Once that has been established, we see that we can pair up all the numbers 2,3 , $4, \ldots,(p-2)$ with their inverses. Since a number times its inverse is congruent to 1 $(\bmod p)$, the product of this part of the factorial is congruent to $1(\bmod p)$. Multplying by 1 and by $(p-1)$ gives $(p-1)$, i.e., gives $-1(\bmod p)$.
7. Suppose $m \in \mathbb{N}$ and let a be an integer such that $\operatorname{gcd}(a, m)=1$. In the last problem set you showed that there exists an integer k such that $a^{k} \equiv 1(\bmod m)$. Of course, then we also have $a^{2 k} \equiv 1(\bmod m)$, so there will be many such exponents.

Let $e \geqslant 1$ be the smallest exponent such that $a^{e} \equiv 1(\bmod m)$. This is called the order of a mod m. Show that
a. If n is a multiple of e, then $a^{n} \equiv 1(\bmod m)$.

$$
\text { If } n=e d \text {, then } a^{n}=a^{e d}=\left(a^{e}\right)^{d} \equiv 1^{d}=1(\bmod p)
$$

b. Conversely, if $a^{n} \equiv 1(\bmod p)$, then e is a divisor of n. (Consider the remainder when we divide n by e.)

We know $a^{n} \equiv 1(\bmod p)$ and $a^{e} \equiv 1(\bmod m)$. Write $n=e q+r$ with $0 \leqslant r<e$. We want to prove $r=0$.

Since $a^{e} \equiv 1$, we get $a^{e q} \equiv 1$. Multiplying both sides by a^{r} gives $a^{e q+r} \equiv a^{r}$ $(\bmod p)$. Since $e q+r=n$ we get $a^{r} \equiv 1(\bmod p)$. But e is the smallest positive exponent with this property and $0 \leqslant r<e$. So $r=0$ and e is a divisor of n.

This really has nothing to do with modular arithmetic per se. Rather, it is about the orders of elements of any finite group.

