
ma357, Spring 2020 — Problem Set 5 Solutions

1. NTG, Exercise 4.7.41.

The hint suggests looking at the equation mod 7. Indeed, if

x2 − 7y3 + 21z5 = 3,

then we must have x2 ≡ 3 (mod 7). Squaring 0, ±1, ±2, ±3 gives 0, 1, 4, 2. It follows
that 3 is not a square mod 7, and therefore no such x exists, so that the original equation
has no solutions.

2. NTG, Exercise 4.7.42. (Experiment first!)

Trying the first four values of n (on a computer, I hope) shows that they are all divisible
by 3.

gp > for(n=1,4,print(factor(2^(2^n)+5)))
[3, 2]
[3, 1; 7, 1]
[3, 2; 29, 1]
[3, 1; 7, 1; 3121, 1]

So let’s work mod 3. Notice that 22 ≡ 1 (mod 3), and therefore 22
n ≡ 1 (mod 3)

for all n � 1. Therefore

22
n

+ 5 ≡ 1+ 2 ≡ 0 (mod 3).

Since 22
n

+ 5 � 5 > 3, it follows that 22
n

+ 5 is composite.
I found it hard to guess which modulus to work with just from looking at the formula.

3. Do any numbers satisfy the equation ϕ(n) = 2n?

No, because ϕ(n) counts how many of the numbers between 1 and n are relatively
prime to n, and there are certainly no more than n of them!

4. Do any numbers satisfy the equation ϕ(n) = n/2?

If n is odd, it is clearly not possible, since n/2 is not an integer. It’s easy to see that any
power of two does satisfy the equation, since gcd(n, 2a) = 1 if and only if n is odd.

For the general case, write n = 2am with m odd and a > 0. Then m is one of the
n/2 odd numbers that are less than n, and therefore ϕ(n) < n/2. So the upshot is that
ϕ(n) = n/2 if and only if n = 2a for some a � 1.

Yes, one can also do this using more powerful results (multiplicativity, or even the
formula for ϕ(n) in terms of the factorization of n.)

Why should a man be scorned if, finding himself in prison, he tries to get out and go home? — J. R. R. Tolkien



5. NTG, Exercise 5.6.21.

If you read the text, you know that a is a zero divisor in Z/35Z if and only if gcd(a, 35) >
1. So the zero divisors in Z/35Z are the classes of

5, 7, 10, 14, 15, 20, 21, 25, 28, 30.

The units are all the others. The pairs (a, a−1) are

(1, 1), (2, 18), (3, 12), (4, 9), (6, 6), (8, 22), (11, 16), (13, 27)

(17, 33), (19, 24), (23, 32), (26, 31), (29, 29), (34, 34).

Notice that we have four cases of a = a−1.
For Z/11Z, it’s easier: there are no zero divisors, and every nonzero element is a

unit. The (a, a−1)) pairs are

(1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (10, 10).

Since 11 is prime a = a−1 can only happen if a = ±1.

6. In the previous assignment you showed that if n > 4 is not prime then (n−1)! ≡ 0

(mod n). This problem shows what happens when n is prime.
Let p be a prime. Use the fact that every element of (Z/pZ)× has an inverse

(mod p) to show that
(p− 1)! ≡ −1 (mod p).

This is called Wilson’s Theorem.

The first thing we need to show is that the only numbers that are their own inverses mod
p are 1 and −1. In fact, if x is its own inverse, then x2 ≡ 1 (mod p), which means that
p | (x2 − 1), and so that p divides the product (x − 1)(x + 1). But if a prime divides a
product it must divide one of the factors, so either p | (x − 1) or p | (x + 1). The first
of these says x ≡ 1 (mod p), and the second says x ≡ −1 (mod p). So only 1 and −1

are their own inverses.
Once that has been established, we see that we can pair up all the numbers 2, 3,

4, . . . , (p − 2) with their inverses. Since a number times its inverse is congruent to 1

(mod p), the product of this part of the factorial is congruent to 1 (mod p). Multplying
by 1 and by (p− 1) gives (p− 1), i.e., gives −1 (mod p).

7. Suppose m ∈ N and let a be an integer such that gcd(a,m) = 1. In the last prob-
lem set you showed that there exists an integer k such that ak ≡ 1 (mod m). Of
course, then we also have a2k ≡ 1 (mod m), so there will be many such exponents.

Let e � 1 be the smallest exponent such that ae ≡ 1 (mod m). This is called
the order of a mod m. Show that

a. If n is a multiple of e, then an ≡ 1 (mod m).

If n = ed, then an = aed = (ae)d ≡ 1d = 1 (mod p).

What is the use of pretending one can treat the members of one’s own family as ordinary human beings? – W. H. Auden



b. Conversely, if an ≡ 1 (mod p), then e is a divisor of n. (Consider the re-
mainder when we divide n by e.)

We know an ≡ 1 (mod p) and ae ≡ 1 (mod m). Write n = eq + r with
0 � r < e. We want to prove r = 0.

Since ae ≡ 1, we get aeq ≡ 1. Multiplying both sides by ar gives aeq+r ≡ ar

(mod p). Since eq+ r = n we get ar ≡ 1 (mod p). But e is the smallest positive
exponent with this property and 0 � r < e. So r = 0 and e is a divisor of n.

This really has nothing to do with modular arithmetic per se. Rather, it is about the orders
of elements of any finite group.

Why does the woodpecker peck the galvanized downspout? That’s what he does, he’s a woodpecker. – Gene Wolfe


