MA357, Spring 2020 — Problem Set 5 Solutions

1. NTG, Exercise 4.7.41.

The hint suggests looking at the equation mod 7. Indeed, if

$$x^2 - 7y^3 + 21z^5 = 3,$$

then we must have $x^2 \equiv 3 \pmod{7}$. Squaring $0, \pm 1, \pm 2, \pm 3$ gives 0, 1, 4, 2. It follows that 3 is not a square mod 7, and therefore no such x exists, so that the original equation has no solutions.

2. NTG, Exercise 4.7.42. (Experiment first!)

Trying the first four values of n (on a computer, I hope) shows that they are all divisible by 3.

```
gp > for(n=1,4,print(factor(2^(2^n)+5)))
[3, 2]
[3, 1; 7, 1]
[3, 2; 29, 1]
[3, 1; 7, 1; 3121, 1]
```

So let's work mod 3. Notice that $2^2 \equiv 1 \pmod{3}$, and therefore $2^{2^n} \equiv 1 \pmod{3}$ for all $n \ge 1$. Therefore

$$2^{2^n} + 5 \equiv 1 + 2 \equiv 0 \pmod{3}.$$

Since $2^{2^n} + 5 \ge 5 > 3$, it follows that $2^{2^n} + 5$ is composite.

I found it hard to guess which modulus to work with just from looking at the formula.

3. Do any numbers satisfy the equation $\varphi(n) = 2n$?

No, because $\varphi(n)$ counts how many of the numbers between 1 and n are relatively prime to n, and there are certainly no more than n of them!

4. Do any numbers satisfy the equation $\varphi(n) = n/2$?

If n is odd, it is clearly not possible, since n/2 is not an integer. It's easy to see that any power of two does satisfy the equation, since $gcd(n, 2^{\alpha}) = 1$ if and only if n is odd.

For the general case, write $n = 2^{\alpha}m$ with m odd and a > 0. Then m is one of the n/2 odd numbers that are less than n, and therefore $\varphi(n) < n/2$. So the upshot is that $\varphi(n) = n/2$ if and only if $n = 2^{\alpha}$ for some $a \ge 1$.

Yes, one can also do this using more powerful results (multiplicativity, or even the formula for $\phi(n)$ in terms of the factorization of n.)

5. NTG, Exercise 5.6.21.

If you read the text, you know that a is a zero divisor in $\mathbb{Z}/35\mathbb{Z}$ if and only if gcd(a,35) > 1. So the zero divisors in $\mathbb{Z}/35\mathbb{Z}$ are the classes of

The units are all the others. The pairs (a, a^{-1}) are

$$(1, 1), (2, 18), (3, 12), (4, 9), (6, 6), (8, 22), (11, 16), (13, 27)$$

(17, 33), (19, 24), (23, 32), (26, 31), (29, 29), (34, 34).

Notice that we have four cases of $a = a^{-1}$.

For $\mathbb{Z}/11\mathbb{Z}$, it's easier: there are no zero divisors, and every nonzero element is a unit. The (a, a^{-1}) pairs are

(1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (10, 10).

Since 11 is prime $a = a^{-1}$ can only happen if $a = \pm 1$.

6. In the previous assignment you showed that if n > 4 is not prime then $(n-1)! \equiv 0 \pmod{n}$. This problem shows what happens when n is prime.

Let p be a prime. Use the fact that every element of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ has an inverse (mod p) to show that

 $(p-1)! \equiv -1 \pmod{p}.$

This is called Wilson's Theorem.

The first thing we need to show is that the only numbers that are their own inverses mod p are 1 and -1. In fact, if x is its own inverse, then $x^2 \equiv 1 \pmod{p}$, which means that $p \mid (x^2 - 1)$, and so that p divides the product (x - 1)(x + 1). But if a prime divides a product it must divide one of the factors, so either $p \mid (x - 1)$ or $p \mid (x + 1)$. The first of these says $x \equiv 1 \pmod{p}$, and the second says $x \equiv -1 \pmod{p}$. So only 1 and -1 are their own inverses.

Once that has been established, we see that we can pair up all the numbers 2, 3, 4, ..., (p-2) with their inverses. Since a number times its inverse is congruent to 1 (mod p), the product of this part of the factorial is congruent to 1 (mod p). Multplying by 1 and by (p-1) gives (p-1), i.e., gives $-1 \pmod{p}$.

7. Suppose $m \in \mathbb{N}$ and let a be an integer such that gcd(a, m) = 1. In the last problem set you showed that there exists an integer k such that $a^k \equiv 1 \pmod{m}$. Of course, then we also have $a^{2k} \equiv 1 \pmod{m}$, so there will be many such exponents.

Let $e \ge 1$ be the *smallest* exponent such that $a^e \equiv 1 \pmod{m}$. This is called the *order* of a mod m. Show that

a. If n is a multiple of e, then $a^n \equiv 1 \pmod{m}$.

If
$$n = ed$$
, then $a^n = a^{ed} = (a^e)^d \equiv 1^d = 1 \pmod{p}$.

b. Conversely, if $a^n \equiv 1 \pmod{p}$, then e is a divisor of n. (Consider the remainder when we divide n by e.)

We know $a^n \equiv 1 \pmod{p}$ and $a^e \equiv 1 \pmod{m}$. Write n = eq + r with $0 \leq r < e$. We want to prove r = 0.

Since $a^e \equiv 1$, we get $a^{eq} \equiv 1$. Multiplying both sides by a^r gives $a^{eq+r} \equiv a^r \pmod{p}$. Since eq + r = n we get $a^r \equiv 1 \pmod{p}$. But *e* is the smallest positive exponent with this property and $0 \leq r < e$. So r = 0 and *e* is a divisor of *n*.

This really has nothing to do with modular arithmetic per se. Rather, it is about the orders of elements of any finite group.