MA357, Spring 2020 - Problem Set 5

This assignment is due on Friday, March 13. It's a bit shorter than usual because you also have a writing assignment due that day.
I. NTG, Exercise 4.7.4I.
2. NTG, Exercise 4.7.42. (Experiment first!)
3. Do any numbers satisfy the equation $\varphi(n)=2 n$?
4. Do any numbers satisfy the equation $\varphi(n)=n / 2$?
5. NTG, Exercise 5.6.2I.
6. In the previous assignment you showed that if $n>4$ is not prime then $(n-1)!\equiv 0$ $(\bmod n)$. This problem shows what happens when n is prime.

Let p be a prime. Use the fact that every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$has an inverse $(\bmod p)$ to show that

$$
(p-1)!\equiv-1 \quad(\bmod p)
$$

This is called Wilson's Theorem.
7. Suppose $\mathfrak{m} \in \mathbb{N}$ and let a be an integer such that $\operatorname{gcd}(a, m)=1$. In the last problem set you showed that there exists an integer k such that $a^{k} \equiv 1(\bmod m)$. Of course, then we also have $a^{2 k} \equiv 1(\bmod m)$, so there will be many such exponents.

Let $e \geqslant 1$ be the smallest exponent such that $a^{e} \equiv 1(\bmod m)$. This is called the order of a mod m. Show that
a. If n is a multiple of e, then $a^{n} \equiv 1(\bmod m)$.
b. Conversely, if $a^{n} \equiv 1(\bmod m)$, then e is a divisor of n. (Consider the remainder when we divide n by e.)

To Explore: Suppose we want to decide whether there exists a non-trivial solution in integers for the quadratic equation $a x^{2}+b y^{2}+c z^{2}=0$. (Non-trivial here means that we don't want the solution $x=y=z=0$.) To avoid degenerate cases, let's assume that a, b, and c are squarefree, i.e., they do not have any square divisors, and that they do not all have the same sign.
a. Show that if such a solution exists, then for every m the congruence $a x^{2}+$ $b y^{2}+c z^{2} \equiv 0(\bmod m)$ has a non-trivial solution. (Be careful! After all, a nonzero integer x might be zero $\bmod m$.)
b. Explain why it follows that if the congruence mod m fails to have a non-trivial solution for some m, then there is no non-trivial integer solution.
c. Is that the only obstruction? In other words, is it true that if the congruences mod m have solutions for every m, we can conclude that there are integer solutions as well?

To Explore: A point in the plane with integer coordinates (a, b) is called visible if the line segment connecting $(0,0)$ to (a, b) does not contain any other points with integer coordinates.
a. Show that (a, b) is visible if and only if $\operatorname{gcd}(a, b)=1$.
b. Let $V(n)$ be the number of visible points (a, b) in the square defined by the conditions $1 \leqslant a \leqslant n, 1 \leqslant b \leqslant n$. Compute $V(n)$ for $n=10,20,30,40,50$. (You'll probably need a computer to do this.)
c. For each of those values of n, compute $V(n) / n^{2}$, i.e., the fraction of points in the square that are visible.
d. Make a guess as to whether the ratio $V(n) / n^{2}$ has a limit as $n \rightarrow \infty$.
e. Prove your guess.

To Explore: Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers. Study the theory of diophantine equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

If we restrict the solutions to positive integers, i.e., we assume $x_{i} \geqslant 0$, this is sometimes known as the postage stamp problem: think of a_{1}, a_{2}, etc. as the values of the stamps you have, and of b as the amount of postage you want to put onto an envelope.

To Explore: In calculus, you may have seen a proof that the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\ldots
$$

diverges. What happens if we take only the reciprocals of the primes? Does the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{p}+\ldots
$$

converge?
If you can settle that one, what if we select subsets of the primes to work with? For example, how about summing over all p such that $p+2$ is also prime? Does that series converge?

