
ma357, Spring 2020 — Problem Set 4 Solutions

1. NTG, Exercise 4.7.5.

Notice first that it doesn’t work for n = 4, because 3! = 6 is not congruent to zero mod
4. A good proof will clarify what is special about 4.

Suppose first that n = ab with a �= b and 1 < a < n and 1 < b < n. Then both a

and b will appear as factors in

(n− 1)! = (n − 1)(n− 2) · · · (2)(1),

so n = ab will be a divisor of (n − 1)! (but if a = b then that number appears only
once). So we have shows that (n − 1)! ≡ 0 (mod n) whenever n can be written as a
product of two distinct non-trivial factors.

The only non-prime n that cannot be written that way are squares of primes, so
it remains to consider n = p2 where p is a prime. But if n = p2 and p > 2 then
1 < p < 2p < p2, so both p and 2p appear in the list

1, 2, 3, . . . , n− 1.

That shows that p2 divides (p2−1)! when p > 2, which completes the proof. The result
is false when p = 4 exactly because in that case 2p = p2 is not one of the factors.

2. NTG, Exercise 4.7.8.

One can just run to the computer and ask GP to compute things like Mod(5,7)^18. That
leads us quickly to

518 ≡ 1 (mod 7), 68105 ≡ 1 (mod 13), 647 ≡ 0 (mod 12).

A slightly more intelligent approach might tells us more about why those are the answers.
For (a), we might start by noticing that 5 ≡ −2 (mod 7) and then noticing that

23 ≡ 1 (mod 7). Putting those together gives 53 ≡ −1 (mod 7) and hence 56 ≡ 1

(mod 7). Cubing both sides gives 518.
For (b), we start by noticing that 68 ≡ 3 (mod 13), so we’re really computing pow-

ers of 3. Successive squaring is the way to go (unless you know Fermat’s little theorem).

32 ≡ 9 (mod 13)

34 ≡ 92 ≡ 3 (mod 13)

. . .

But wait, that already tells us 34 ≡ 3 (mod 13), so 33 ≡ 1 (mod 13). Since 105 is a
multiple of 3, we’re done.

Finally, for (c) just notice that 62 ≡ 0 (mod 12).

I am a firm believer that if you score one goal the other team have to score two to win.



3. NTG, Exercise 4.7.11.

This is one of those darstardly tricks. Any three consecutive numbers look like n− 1, n,
n+ 1, whose sum is 3n. So if you every triple 37k− 1, 37, 37k+ 1 will give an example.

If you don’t think of the dastardly trick and write the numbers as m,m + 1,m + 2,
then you’re solving the congruence 3m + 3 ≡ 0 (mod 37), which just gives m ≡ −1

(mod 37).
In any case, the smallest example is 36, 37, 38.

4. Show that if n is an integer, then so is
n5

5
+

n3

3
+

7n

15
.

Taking a common denominator gives

3n5 + 5n3 + 7n

15
,

so what we want need to show is that 3n5 + 5n3 + 7n ≡ 0 (mod 15). It’s enough to
show that this expression is 0 (mod 3) and is also 0 (mod 5). So do each separately.

Working mod 3,

3n5 + 5n3 + 7n ≡ 2n3 + n (mod 3).

Now for n3 we can climb every mountain to check that n3 ≡ n (mod 3) (it’s pretty
easy if you realize that the three elements of Z/3Z are 0, 1, and −1). So

2n3 + n ≡ 2n+ n ≡ 3n ≡ 0 (mod 3),

in other words, 3n5 + 5n3 + 7n is always divisible by 3.
Now work mod 5:

3n5 + 5n3 + 7n ≡ 3n5 + 2n.

Now climb mountains to see that n5 ≡ n (mod 5) and conclude that 3n5+5n3+7n ≡
5n is divisible by 5.

In fact, np ≡ n (mod p) is true for all primes p. This is one of the ways to state
“Fermat’s Little Theorem.”

5. NTG, Exercise 4.7.25.

Remember that there are solutions to ax ≡ b (mod m) if and only if gcd(a,m) divi-
dides b. The number of solutions (up to congruence) is exactly the gcd.

(a) gcd(6, 11) = 1, so there is a unique solution, which is x ≡ 7 (mod 11).
(b) gcd(6, 9) = 3 which does not divide 11, so there are no solutions.
(c) gcd(6, 15) = 3 does divide 9, so there are three solutions. To find them, we first

divide through by 3 to get 2x ≡ 3 (mod 5), which gives x ≡ 4 (mod 5). To get the
solutions mod 15 we just add multiples of 5. So the solutions are x ≡ 4, 9, 14 (mod 15).

It’s now 1-1, an exact reversal of the score on Saturday.



6. NTG, Exercise 4.7.34.

This one is just work. The answers are x ≡ 156 (mod 504), x ≡ 267 (mod 504), and
x ≡ 82 (mod 504). Since the moduli are 7, 8, 9 in all three cases, one could use Sage to
find the CRT basis, which Sage gives as [−216,−63,−224].

7. A band of 17 pirates, upon dividing their gold coins, found that three coins
remained after the coins had been apportioned evenly. In the ensuing brawl, one of
the pirates was killed. The wealth was again redistributed equally, and this time ten
coins remained. Again an argument broke out and one of the pirates was killed.
This time the fortune was distributed evenly among the survivors. What is the least
possible value for the number of coins the pirates had initially?

If x is the number of coins, the problem says that x ≡ 3 (mod 17), x ≡ 10 (mod 16),
and x ≡ 0 (mod 15). So this is a standard Chinese Remainder Theorem problem, and
it can be solved the usual way. The number of coins must be congruent to 3930 (mod
4080), so the smallest possible number of coins is 3930.

I tend to use GP to do quick computations. Here is how that looks:

gp > ?chinese
chinese(x,{y}): x,y being both intmods (or polmods) computes z in the same
residue classes as x and y.

gp > chinese(Mod(3,17),Mod(10,16))
%1 = Mod(122, 272)
gp > chinese(%,Mod(0,15))
%2 = Mod(3930, 4080)

You can do this in the Sage Cell Server if you put it into GP mode, or you can use
gp.chinese in a Sage Notebook.

8. Let k and s be two positive integers. Show that there exists a sequence of k

consecutive integers each of which is divisible by an s-th power. (For example,
if k = 3 and s = 2, we are asking for three consecutive integers which are each
divisible by a square. Then 48, 49, and 50 are an example, since they are divisible
by 42, 72, and 52, respectively. You want to prove that such sequences always exist.)

Take mi = ps
i where pi is the ith prime number, and apply the Chinese remainder

theorem to x ≡ −(i− 1) (mod mi) for i = 1, 2, . . . k. Then x, x + 1, . . . , x+ (k − 1)
are divisible, respectively, by 2s, 3s, . . . , ps

k.

9. In this problem we want to explore the multiplicative structure of Z/mZ. Re-
member that we already know that a will have an inverse mod m if and only if
gcd(a,m) = 1.

a. How many congruence classes are invertible mod 4? How about mod 12?

We didn’t underestimate them. They were just a lot better than we thought.



We checked in class that ϕ(4) = 2, so two congruence classes are invertible. For
12, a direct count shows ϕ(12) = 4. Or you can ask Sage: euler_phi(12).

b. Suppose m is prime. Show that any a �≡ 0 (mod m) is invertible mod m.

If a �≡ 0 (mod m) then a is not divisible by m. Since m is prime, that gives
gcd(a,m) = 1 and a is invertible mod m.

c. Suppose a is invertible mod m. Show that there must exist an integer k � 1

such that ak ≡ 1 (mod m).

This was the hard one. Consider the list

a, a2, a3, a4, · · · ∈ Z/mZ.

Since Z/mZ is a finite set, that list can only contain finitely many different elements.
So there must exist r > s such that ar ≡ as (mod m). If we multiply both sides s
times by the inverse of a, we get ar−s ≡ 1 (mod m). Since r > s, k = r− s � 1

does what we want.

d. Let m = 7. For each a ≡ 1, 2, 3, 4, 5, 6 (mod 7), find the least k � 1 such that
ak ≡ 1 (mod 7).

Here’s a little table

a 1 2 3 4 5 6

smallest k 1 3 6 3 6 2

In GP the command znorder(Mod(4,7)) gives the least k such that 4k ≡ 1

(mod 7). In Sage you first create Z/7Z with IntegerModRing(7) and then use
R(4).multiplicative_order().

10. NTG, Exercise 4.7.27.

The binomial theorem says that

(a+ b)p =

p∑

n=0

(
p

n

)
ap−nbn.

Remember that (
p

n

)
=

p!
n!(p− n)!

.

If n = 0, we get p!/p! = 1. If n = p we get p!/p! = 1 as well. If 0 < n < p, there is a
p in the numerator but there is no p in the denominator (because both n and p − n are
less than p). So

(
p
n

) ≡ 0 (mod p) when n = 1, 2, . . . , p− 1. Plugging everything in,

(a+ b)p ≡ ap + bp (mod p).

If you don’t believe you can win, there is no point in getting out of bed at the end of the day.


