
ma357, Spring 2020 — Problem Set 3 Solutions

1. NTG, Exercise 2.11.36.

Suppose gcd(a, b) = 1 and ab is a square. Write out the factorizations of a and b:

a = pa1

1 pa2

2 · · ·pan
n

b = qb1

1 qb2

2 · · ·qbm
m

Since gcd(a, b) = 1 the lists {p1, p2, . . . , pn} and {q1, q2. . . . , qm} are disjoint, so the
factorization of ab is just

ab = pa1

1 pa2

2 · · ·pan
n qb1

1 qb2

2 · · ·qbm
m .

Since ab is a square, we know that all the exponents in its factorization are even. So all
ai are even and all bj are even. But then all the exponents in the factorizations of a and
b even, so they are both are squares.

Hard question: can it be done without using unique factorization?

2. The least common multiple of two integers a and b is the smallest positive num-
ber divisible by both a and b. The usual notation is lcm(a, b). Prove that

gcd(a, b) lcm(a, b) = ab.

(This is easy using unique factorization, a little bit harder without it.)

Let d = gcd(a, b), so that a = a ′d, b = b ′d and gcd(a ′, b ′) = 1.
Suppose m is a common multiple of a and b. Then in particular it is divisible by a,

so that m = ax = a ′dx. We know that b|m, so that (b ′d)|(a ′dx). Then b ′|a ′x, and
since gcd(a ′, b ′) = 1 we conclude x = b ′y. Hence any common multiple looks like
m = a ′b ′dy with y ∈ Z. The smallest common multiple is the one with y = 1, so we
get

lcm(a, b) = a ′b ′d =
ab

d
=

ab

gcd(a, b)
,

which is what we wanted to prove.
The version with unique factorization goes like this. Suppose we have factorizations

of both a and b; allowing 0 as an exponent, we can write them as

a = pa1

1 pa2

2 · · ·pan
n

b = pb1

1 pb2

2 · · ·pbn
n

Then it’s clear that

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · ·pmin(an,bn)

n

lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · ·pmax(an,bn)

n

He may look like an idiot and talk like an idiot but don’t let that fool you. He really is an idiot.



So the result we want boils down to

min(ai, bi) + max(ai, bi) = ai + bi,

which is clearly true.

3. Suppose n,m ∈ N and write out their prime factorizations:

n = pa1

1 pa2

2 · · ·pak

k

m = pb1

1 pb2

2 · · ·pbk

k

with ai � 0, bi � 0 (we allow exponent zero in order to be able to use the same
list of primes for both numbers). Find the prime factorizations of gcd(n,m) and
lcm(m,n).

See the previous solution (up to notation).

4. Show that if q = 2n − 1 is prime, then n must be prime. Find examples to
show that when n is prime then 2n − 1 may or may not be prime. (Hint: think
factorizations.)

The key observation is the identity

xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ x+ 1).

If n is not prime, write n = mk with m > 1. Then, since 2mk = (2m)k,

2mk − 1 = (2m − 1)(2m(k−1) + · · ·+ 2m + 1).

Since m > 1, 2m − 1 �= 1, so this gives a nontrivial factorization of 2mk − 1, which is
therefore not prime. So 2n − 1 can only be prime if n is prime.

For the examples, 22 − 1 = 3 is prime, but 211 − 1 = 23 · 89 is not prime. Primes of
the form 2p − 1 are known as Mersenne primes.

5. Suppose a is an integer, a � 2, n > 0, and an + 1 is prime. Show that n is a
power of 2. (Same hint!)

First, n = 1 is a power of 2 and of course any prime is of the form a + 1 for some a.
Not much fun here.

If n > 1 is odd then we need the identity

xn + 1 = (x+ 1)(xn−1 − xn−2 + xn−3 − · · ·+ x2 − x+ 1).

(One way to see that such an identity must exist is to notice that when n is odd −1 is
a root of xn + 1.) Let x = a � 2. Since 2 < a + 1 < an + 1, we get a nontrivial
factorization of an + 1. So when n is odd and n > 1 we have shown an + 1 cannot be
prime.

Math illiteracy strikes 8 out of 5 people.



If n is even but not a power of 2, then n = 2bk with k > 1 odd and b � 1. Now the
same factorization formula can be used: an + 1 = (a2b

)k + 1 and making x = a2b

gives
you a factorization of an + 1, which cannot be trivial because 2 < a2b

+ 1 < an − 1 (for
the last inequality we use k > 1). So an + 1 can’t be prime unless n is a power of 2.

6. Let p be a prime number. Suppose q = 2p − 1 is prime, and let n = 2p−1q.

a. Find all the positive proper divisors of n. (A divisor d of n is proper if d �= n.)

If q is a prime, then any divisor of 2nq must be either a power of 2 or a power of
2 times q (by unique factorization!). This gives the list

1, 2, 22, . . . , 2p−2, 2p−1, q, 2q, 22q, . . . , 2p−2q,

where the last one, 2p−1q, is not there because it’s not a proper divisor.

b. Show that the sum of the proper divisors of n is equal to n.

The formula for the sum of a gemetric progression shows at once that

1+ 2+ 22 + · · ·+ 2k = 2k+1 − 1

(or just write the first number in binary and see what happens when you add 1). So
the sum of all the proper divisors of 2p−1q is

1+ 2+ 22 + · · ·+ 2p−1 + q + 2q+ 22q + · · ·+ 2p−2q.

Factoring out q from the second half, using the summation formula, and remem-
bering that q = 2p − 1 gives

2p − 1+ (2p−1 − 1)q = q + 2p−1q − q = 2p−1q,

as claimed.

c. Find the first three n of this form.

The first three primes work:

• 22 − 1 = 3 gives n = 6

• 23 − 1 = 7 gives n = 28

• 25 − 1 = 31 gives n = 496

Numbers n such that the sum of the proper divisors of n is equal to n are known as
perfect numbers. The numbers you will find are the three smallest perfect numbers.

Euler proved that all even perfect numbers are obtained this way. What about odd perfect
numbers?

Just because you’re paranoid doesn’t mean they AREN’T after you.



7. For any positive integers n, let σ0(n) be equal to the number of positive divisors
of n. Show that if gcd(n,m) = 1 then σ0(mn) = σ0(m)σ0(n). (Functions with this
property are called multiplicative.)

In class we found a formula for σ0(n) in terms of the prime factorization of n. Since the
prime factorizations of n and m have no factors in common, it’s easy to see from that
formula that σ0(mn) = σ0(m)σ0(n).

An alternative approach would be to show that any divisor of mn must be equal to
de where d|m and e|n, and this decomposition is unique. That isn’t hard to prove.

It’s worth noticing that σ0(2) = 2 but σ0(4) = 3 �= σ0(2)σ0(2), so the assumption
that gcd(m,n) = 1 is essential.

8. NTG, Exercise 3.5.3. (This is a good example of “it worked once, maybe the
same idea will work again.”)

Notice first that if we multiply two numbers of the form 4k + 1 we get a number of
the same form. (In congruence language, if a ≡ 1 (mod 4) and b ≡ 1 (mod 4), then
ab ≡ 1 (mod 4).) So a number N ≡ −1 (mod 4) must have at least one prime divisor
that is ≡ −1 (mod 4).

Now just follow the earlier proof: give a list p1, p2, . . . , pk of primes that are con-
gruent to −1 mod 4, let N = 4p1p2 · · ·pk − 1. Then N ≡ −1 (mod 4), so it must be
divisible by a prime q ≡ −1 (mod 4), and q cannot be equal to any of the pi.

9. NTG, Exercises 3.5.10 and 3.5.11.

These are both dartardly tricks.
If 17p + 1 = n2, then 17p = n2 − 1 = (n + 1)(n − 1) so either n + 1 = 17 or

n−1 = 17. If n−1 = 17, we get p = n+1 = 19. If n+1 = 17, we get p = n−1 = 15,
which is not prime. So the only such prime is 19 And indeed 17 · 19+ 1 = 324 = 182.

If p+ 1 = n3 then p = n3 − 1, which reduces us to the previous problem set.

10. Show that no square has last digit 2, 3, 7, or 8.

If the last digit of n is a, then n = 10x + a, so n ≡ a (mod 10), so what the question
is asking us to do is show that n2 (mod 10) must be one of the values listed. But that’s
easy: list all 10 possible “residues” (mod 10) and square each. You can save some work
by noticing that a2 = (−a)2, so that you actually only need to square 0, 1, 2, 3, 4, 5. The
answers are 0, 1, 4, 9, 6, 5 (mod 10), so any square must end in one of those digits.

11. Suppose m and n are relatively prime, i.e., gcd(m,n) = 1. Show that to say
a ≡ b (mod mn) is equivalent to the pair of congruences a ≡ b (mod m), a ≡ b

(mod n).

Translating back from congruences into divisibility, what we need to prove is that mn

Never offend people with style when you can offend them with substance.



divides b− a if and only if both m and n do. So in fact we’ll prove that in general:

Lemma: Let K be an integer and suppose gcd(m,n) = 1. Then mn|K if and only if
both m|K and n|K.

Proof: One direction is easy. If mn|K, then K = mnx = m(nx) = n(mx), so m|K and
n|K. The important part is to show the converse.

Converse 1 (Fancy): So suppose m|K and n|K. Then K = my = nz for some
integers y and z. But n is clearly a divisor of nz = my, so we see that n|my. Since
gcd(m,n) = 1, we get that n|y. Hence y = nx and K = my = mnx. So mn|K.

Converse 2 (Brute Force): Consider the prime factorization of K. It must contain the
prime factorization of m and also the prime factorization of n. But gcd(m,n) = 1 means
that these two are disjoint, and together they make up the factorization of mn. So inside
the factorization of K we can find the factorization of mn, showing that mn|K.

12. NTG, Exercise 4.7.10.

Notice first that if n is even we have n2 ≡ 0 (mod 4), while if n is odd we have n2 ≡ 1

(mod 4). Since a, b, c are not all even, the only possibility for a2 + b2 = c2 (mod 4) is
0+ 1 = 1. Hence one of a and b is even and the other is odd. And c is also odd.

13. Suppose we have a2 + b2 = c2 with gcd(a, b, c) = 1. In the previous problem
you showed that one of a and b must be even (and the other odd). Suppose b is
even.

a. Show that gcd(a, b) = 1 and likewise for the other pairs. In particular, a and
c are odd.

Let p be a prime. If p|a and p|b, then also p|(a2+b2), so p|c2, so p|c, contradicting
the assumption that gcd(a, b, c) = 1. So gcd(a, b) = 1. Similarly for the other
pairs.

b. Rewrite the equation as b2 = c2−a3 = (c+a)(c−a). What is gcd(c+a, c−a)?

We solved this in Problem Set 2: since a and c are odd, gcd(c+ a, c− a) = 2.

c. Use Problem 1 to conclude that there exist u, v such that c + a = 2u2 and
c− a = 2v2.

Write b = 2k, c+ a = 2n, c− a = 2m, and we know gcd(m,n) = 1. Then our
equation

b2 = c2 − a3 = (c+ a)(c− a)

Nothing labeled “important” ever is.



becomes
4k2 = 4mn,

so mn = k2. By problem 1, it follows that both m and n are squares, so m = u2,
n = v2.

d. Solve for b in terms of u and v.

We have b2 = 4k2 = 4u2v2, so b = 2uv.

e. Find all integer solutions a2 + b2 = c2 such that gcd(a, b, c) = 1.

We showed that if a2 + b2 = c2 then there exist u, v such that c + a = 2u2,
c−a = 2v2, so c = u2+v2 and a = u2−v2. Since a and c are odd and relatively
prime, we also see that u and v are relatively prime and cannot both be odd. So

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

Conversely, if a, b, c are of that form it’s easy to check that they satisfy the equa-
tion. So as u and v run through all pairs of relatively prime integers that are not
both odd, this formula gives all solutions.

One repays a teacher badly if one always remains nothing but a pupil. – Friedrich Nietzsche


