
ma357, Spring 2020 — Problem Set 2 Solutions

1. NTG, Exercise 2.11.18.

There is a trick; here’s how you might come up with it. Let a and b be
integers with b > a. Then b2 − a2 always factors:

b2 − a2 = (b− a)(b+ a).

We want to show that every odd number can be written in this way. That seems
unlikely, since some odd integers are primes! Thinking this through, one realizes
that if n = b2−a2 is going to be equal to a prime, then b−a = 1, so b = a+1.
But then n = a + b = 2b + 1, and any odd number looks like 2b + 1 for some
b. That reveals the trick: if n = 2b+ 1 then n = (b+ 1)2 − b2.

Notice that this also gives a proof that

1+ 3+ 5+ · · ·+ 2b+ 1 = (b+ 1)2.

(Just use induction on b.)

2. Find the gcd of 771769 and 32378, and express it as a linear combination
of these two numbers.

This one is basically just work: follow the algorithm (or, more likely, use Sage’s
xgcd command), and it comes out. We get that gcd(771769, 32378) = 1, and
taking x = −14281, y = 340405 makes 771769x+32378y = 1 (another solution
is x = 18097, y = −431364).

3. Suppose you know that gcd(a, b) = 1. What can you say about each of
the following?

a. gcd(a+ b, a− b)

If d|(a+ b) and d|(a− b) then, taking the sum and difference, we see that
d|(2a) and d|(2b). So consider two cases:

• If d is even, say d = 2u. Then it follows that u|a and u|b, hence, given
our assumption, that u = 1 (or −1, but gcds are positive). Hence,
d = 2.

You can’t get a computer to outsmart a human. You can only get it to out-dumb a human.



• If d is odd, then gcd(d, 2) = 1, and we can conclude that d|a and d|b,
and hence that d = 1.

So the gcd is either 1 or 2. Both cases can occur (consider a = 2, b = 3

and a = 3, b = 5).

Can we do it using linear combinations? Well, we’re given that gcd(a, b) =
1, so we know we can find r and s such that ar+ bs = 1. Suppose we try
to find x and y such that (a+b)x+(a−b)y = 1. This equation turns into
a(x+ y) + b(x− y) = 1, so we want x+ y = r, x− y = s, which works
out to x = (r + s)/2 and y = (r − s)/2. If r and s are both odd, we can
do that, and we get gcd(a + b, a − b) = 1. Otherwise, taking x = r + s

and y = r− s gives (a+ b)x+ (a− b)y = 2, and the gcd is either 1 or 2.

b. gcd(a, a+ b)

If d|a and d|(a+ b), then d|b, so d = 1. So gcd(a, a+ b) = 1.

Alternatively, given ar+ bs = 1, we have a(r− s) + (a+ b)s = 1.

c. gcd(2a, 2b)

Clearly 2 is a common divisor. To show that it is the greatest common
divisor, argue as in (a): any odd common divisor must be either 1 or −1,
and any even common divisor must be either 2 or −2. So the gcd is 2.

Linear combinations work too: from ax+by = 1, we get (2a)x+(2b)y =
2, and it follows that the gcd is either 1 or 2. Since 2 clearly is a common
divisor, it must be the gcd.

d. gcd(2a, b)

Again, either 1 or 2, depending on whether b is even or not.

4. Let n � 1 be an integer. Prove that n! + 1 and (n + 1)! + 1 are always
relatively prime.

Remember that (n + 1)! = (n + 1)n!. So if we let a = n! + 1 and b =
(n + 1)! + 1, then (n + 1)a − b = n. So if r divides a and b, we can conclude

Modern man is a prisoner who thinks he is free because he refrains from touching the walls of his dungeon.



that r also divides n> But if r divides n, it divides n!. So r divides both n! and
n! + 1, hence divides their difference, which is 1. Hence r = 1.

It’s probably possible to find an explicit linear combination that’s equal to 1,
but it’s hardly worth the effort.

5. In 1509, DeBouvelles claimed that for every n � 1 at least one of the
numbers 6n− 1 and 6n+ 1 was prime. Find a counterexample to show that
he was wrong, then show that there are infinitely many counterexamples
(i.e., show that there are infinitely many n such that both 6n− 1 and 6n+ 1

are composite).

Finding counterexamples is easy: in Sage,

for i in range (1,39):
print ’%6s %9s %9s’%(i,factor(6*i-1),factor(6*i+1))

Yields

1 5 7
2 11 13
3 17 19
4 23 5^2
5 29 31
6 5 * 7 37
7 41 43
8 47 7^2
9 53 5 * 11
10 59 61
11 5 * 13 67
12 71 73
13 7 * 11 79
14 83 5 * 17
15 89 7 * 13
16 5 * 19 97
17 101 103
18 107 109
19 113 5 * 23
20 7 * 17 11^2

He is not only dull himself, he is the cause of dullness in others.



21 5^3 127
22 131 7 * 19
23 137 139
24 11 * 13 5 * 29
25 149 151
26 5 * 31 157
27 7 * 23 163
28 167 13^2
29 173 5^2 * 7
30 179 181
31 5 * 37 11 * 17
32 191 193
33 197 199
34 7 * 29 5 * 41
35 11 * 19 211
36 5 * 43 7 * 31
37 13 * 17 223
38 227 229

Looking at the list confirms that the assertion is false, though the first coun-
terexample happens only when k = 20. The other thing we see is that the
counterexamples aren’t all that frequent at first, so we need to be smart to prove
that there are infinitely many of them.

The proof I like is based on the idea that it’s easier to prove what we want
if we replace “is composite” by something more specific. For example, suppose
we want to find n such that 6n − 1 is divisible by 5, and 6n + 1 is divisible by 7.
Of course n = 1 works, because we get exactly 5 and 7. If we can find larger ns
that do this, then both 6n− 1 and 6n+ 1 will have to be composite.

To do that, the key is to note that if we add 5 to n we don’t change the fact
that 6n−1 is divisible by 5. Similarly for adding 7. So let’s use the fact that adding
5 seven times is the same as adding 7 five times, i.e., let’s add 35 = 5 × 7. The
difference between 6(n+ 35) − 1 and 6n− 1 is divisible by 5, and the difference
between 6(n+35)+1 and 6n+1 is divisible by 7. (Both differences are equal to
6× 35 = 210, of course.) It follows that for any integer x if we take n = 1+ 35x

we will have 6n− 1 divisible by 5 and 6n+ 1 divisible by 7, and so (except when
x = 0) neither will be prime. (This is basically a congruence argument: we are
“pasting together” a congruence (mod 5) and a congruence (mod 7) to get a
congruence (mod 35).)

The number you have dialed is imaginary. Rotate phone 90 degrees and try again.



One can do the same thing by taking n = 2 + 143x, for example. This time
the crucial divisors are 11 and 13. The apparent rarity of counterexamples is just
a consequence of the fact that these sequences have long(ish) periods. For large
n, it’s more likely than not that neither 6n − 1 nor 6n+ 1 will be prime. On the
other hand, it seems likely that every so often one of them will indeed be prime.
Are there infinitely many values of n for which one of the two expressions gives
a prime?

6. One egg timer can time an interval of exactly 5 minutes, and a second can
time an interval of exactly 11 minutes. How can we boil an egg for exactly
3 minutes (without buying another timer)?

This boils down (!) to solving the equation 5x + 11y = 3. Taking x = 5 and
y = −2 works, as does taking x = −6 and y = 3. Both solutions can easily be
translated into little stories about egg timers.

7. NTG, Exercise 2.11.23.

First we compute gcd(203, 119) = 7. So the three equations in part (a) have
no integer solutions. For part (b), note first that (−7) × 119 + (12) × 203 = 7

(which I found using Sage). So the base solution is x0 = −49, y0 = 84. Since
203/7 = 29 and 119/7 = 17, the general solution is x = −49 + 17k, y =
84− 29k. The solution closest to (0, 0) happens when k = 3: x = 2, y = −3.

8. Find all the integer solutions of 15x + 7y = 310, and then decide how
many of them are positive integer solutions.

We first need to solve 15r+7s = 1, which, fortunately, is easy: r = 1, s = −2.
Now we just scale everything by 310. Hence a first solution is x = 310, y =
−620. The general solution then is

x = 310− 7k

y = −620+ 15k

and the issue now is to find k so that both are positive. From 310 − 7k > 0,
we get k < 44.2, and from −620 + 15k > 0 we get k > 41.3, so the good
values are k = 42, 43, and 44. This leads to the three positive solutions (x, y) =
(16, 10), (9, 25), and (2, 40).

He has no enemies, but is intensely disliked by his friends.



9. NTG, Exercise 2.11.24.

The base case is given: gcd(c, d) = 1. Suppose we know that gcd(c, dn) = 1.
We want to show that gcd(c, dn+1) = 1 as well.

We know there exist integers r and s such that cr + ds = 1. Let g be a
common divisor of c and dn+1. Then g|c, so c = gx for some integer x. So
we have g(xr) + ds = 1, which shows gcd(g, d) = 1. Now rewrite g|dn+1 as
g|(dnd). Since gcd(g, d) = 1 we can conclude g|dn. So g is a common divisor of
c and dn. By the induction hypothesis, it follows that g = 1. So the only common
divisor of c and dn+1 is 1, which is what we needed to show.

10. Let

S =
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

Prove that S is not an integer. (Hint: probably the easiest way is to show
that the denominator is divisible by 2.)

This was the hardest one! Here are two possible ways to do it:

Slick argument: Let L be the product of all the odd numbers up to n, let k be
the largest integer such that 2k is less than or equal to n, and let M = 2k−1L.
Consider the product MS, term by term:

• If m is less than or equal to n and is not equal to 2k, then it is either 2a

for some a < k or it is 2ax with x odd. We need to see that in the
latter case we must have a < k also. Indeed, if a = k and x > 1 then
2kx � 2k × 2 = 2k+1 > n. Hence, in all of these cases M(1/m) is an
integer.

• The only other m is 2k itself. But M2k = (odd)/2, and hence is not an
integer.

Since the sum of a bunch of integers and a fraction (odd)/2 can’t be an integer,
we see that MS is not an integer, and therefore neither is S.

Step-by-step argument: We first need to prove a Lemma, which is easy so I
will leave the proof to you. If p is a prime number, we’ll say something is exactly
divisible by pa if it is divisible by pa but not by pa+1.

There are now three categories of performers: Looking old, looking young and looking odd.



Lemma. If we add two fractions in lowest terms, one with denominator
exactly divisible by 2a and the other with denominator not divisible by 2a, then
the sum, in lowest terms, has denominator exactly divisible by 2a.

Given the Lemma it’s an easy induction argument to show that the denomi-
nator can only get more and more divisible by 2 as we add more terms. At each
step we are always in the situation of the Lemma. We start with 1/2 and each
step, according to the Lemma, will either make the denominator more divisible
by 2 (if the new term is the one divisible by 2a) or keep it just as divisible as it was
before (if not), the sum will never be an integer.

(The crucial bit of the argument is similar to the estimates we did for the slick
part: it works because 2k+1 sits between 2k and the next number with the same
number of twos in the denominator, namely 3× 2k.)

By the way, one can also make an argument based on showing that if p is a prime
between n/2 and n, then p divides the denominator but not the numerator of
the sum. This is pretty straightforward provided one knows that such a p exists. Do
you think one always does? Why?

11. Are there any prime numbers p of the form p = n3−1? If so, how many
of them are there?

Well, yes: n = 2 yields p = 7 and n = −1 yields p = −2, which is also a
prime. No other values of n work, because of the factorization

n3 − 1 = (n− 1)(n2 + n + 1).

So if n3 − 1 is prime, one of the two factors must be 1, which happens only for
n = 2, n = 0, and n = −1. For n = 0 we get n3 − 1 = −1, which is a unit,
not a prime. So this expression has two prime values, one value that is a unit, one
that is zero, and is composite in every other case.

12. Show that the only n such that n, n + 2, and n + 4 are all primes is
n = 3.

This is correct only if we assume n > 0. As we’ll see below, there’s one more
possibility if we allow n to be negative.

Dividing by 3 we see that n = 3q + r, where r = 0, 1, or 2. Consider each
case separately.

She bent her head over the old book, her eyelashes heavy on her cheek. – Elizabeth Kostova, The Historian



• Suppose n = 3q. Then n can only be prime if q = ±1. If q = −1, then
n = −3 and n + 2 = −1 is not prime. If q = 1 then n = 3 and we get the
expected triple (3, 5, 7).

• Suppose n = 3q + 1. Then n + 2 = 3q + 3 will be divisible by 3, so can
only be prime if it is ±3, which happens for q = 0 and q = −2. If q = 0,
n = 1 is not prime. If q = −3, n = 3q+ 1 = −5 is prime, but n+ 4 = −1

is not.

• Suppose n = 3q + 2. Then n + 4 = 3q + 6 will be divisible by 3, hence
can only be prime if q = −1 or q = −3. If q = −1 then n = 3q+ 2 = −1

is not prime. But if q = −3 then n = 3q + 2 = −7 is prime, and so are
−5 and −3, giving the unexpected solution (−7,−5,−3), which of course
is just the mirror image of the expected one.

Will your answer to this question be “no”?


