MA357, Spring 2020 - Problem Set 2

This assignment is due on Friday, February 21. Most of the problems are about the gcd and its properties.

I. NTG, Exercise 2.II.I8.

2. Find the gcd of 771769 and 32378 , and express it as a linear combination of these two numbers.
3. Suppose you know that $\operatorname{gcd}(a, b)=1$. What can you say about each of the following?
a. $\operatorname{gcd}(a+b, a-b)$
b. $\operatorname{gcd}(a, a+b)$
c. $\operatorname{gcd}(2 a, 2 b)$
d. $\operatorname{gcd}(2 a, b)$
4. Let $n \geqslant 1$ be an integer. Prove that $n!+1$ and $(n+1)!+1$ are always relatively prime.
5. In 1509 , DeBouvelles claimed that for every $n \geqslant 1$ at least one of the numbers $6 n-1$ and $6 n+1$ was prime. Find a counterexample to show that he was wrong, then show that there are infinitely many counterexamples (i.e., show that there are infinitely many n such that both $6 n-1$ and $6 n+1$ are composite).
6. One egg timer can time an interval of exactly 5 minutes, and a second can time an interval of exactly in minutes. How can we boil an egg for exactly 3 minutes (without buying another timer)?
7. NTG, Exercise 2.11.23.
8. Find all the integer solutions of $15 x+7 y=310$, and then decide how many of them are positive integer solutions.
9. NTG, Exercise 2.II.24.
10. Let

$$
S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}
$$

Prove that S is not an integer. (Hint: probably the easiest way is to show that the denominator is divisible by 2 .)
II. Are there any prime numbers p of the form $p=n^{3}-1$? If so, how many of them are there?
12. Show that the only n such that $n, n+2$, and $n+4$ are all primes is $\mathrm{n}=3$.

To Explore: Suppose m and n are positive integers and we use the Euclidean algorithm to compute their gcd. If m and n are big, we should try to estimate how many steps the algorithm is going to take before we launch into it. Try to find a way to estimate the maximum number of steps that will be necessary.

Hint: The worst case scenario is when we get $\mathrm{q}=1$ in all the divisions. If that happens, what can you say and m and n ?

To Explore: Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers. Study the theory of diophantine equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

If we restrict the solutions to positive integers, i.e., we assume $x_{i} \geqslant 0$, this is sometimes known as the postage stamp problem: think of a_{1}, a_{2}, etc. as the values of the stamps you have, and of b as the amount of postage you want to put onto an envelope.

To Explore: Bertrand conjectured, and Chebychev proved, that for any integer $n \geqslant 2$ there is always a prime number p such that $n<p<2 n$. Figure out how to prove this.

