
ma357, Spring 2020 — Problem Set 1 Solutions

1. Prove from the axioms that if a ∈ Z and a �= 0, then a2 ∈ N. In other
words, every nonzero square is positive.

If a ∈ N then a2 ∈ N because N is closed under the operations. If a /∈ N then
−a ∈ N by trichotomy and a2 = (−a)(−a) ∈ N by closure.

2. NTG, Exercise 2.11.2.

Suppose a ∈ N, b /∈ N. Then either b = 0 or −b ∈ N. If b = 0 then
ab = 0 /∈ N. If −b ∈ N then a(−b) ∈ N by closure, so −(ab) ∈ N; by
trichotomy, ab /∈ N.

3. NTG, Exercise 2.11.9. (Induction practice.)

(1) This one is easy, since factorials are made-to-order for induction.
If n = 1 then n! = 1 = nn. Assume that the result holds for n = k, so

k! � kk. Since k < k + 1 we have kk < (k + 1)k, so we have k! < (k + 1)k.
Now multiply both sides by k+ 1 to get (k+ 1)! < (k+ 1)k+1.

(2) This one, on the other hand, is quite hard.
If n = 1 then (n + 1)n−1 = 20 = 1 and nn = 1 as well, so the base case is

true. But at first glance it’s hard to see how to make the induction work, because
powers of (n + 1) and powers of (n + 2) are not inductively related (i.e., you
can’t get from one to the other in any sort of easy way). So we need to find a
trick.

The idea is to recast what we want to prove into a form friendlier to induction.
That’s easier said than done: I fooled around for quite a while before I found
something that works. We want to prove

(n+ 1)n−1 � nn

It would be better to have (n− 1)th powers on both sides, so rewrite this as

(n+ 1)n−1 � nn−1n

Ridicule is the only honourable weapon we have left. – Muriel Spark



and now we can divide by nn−1 to get
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But! The whole thing is pretty silly, in a way. Induction is far from being the easiest
way to prove this. Here are two other approaches that work fine:

a. Let f(x) = xx−(x+1)x−1. Then f(1) = 0. Compute f ′(x) and check (for
example, by plotting it) that it is positive for all x � 1. So f(x) is increasing,
so f(n) > 0 for all n � 2. In fact, f(n) → ∞ as n → ∞, that is, the
inequality is very weak.

b. Remember that
(
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)n → e as n → ∞, and in fact it converges from
below. (To prove that, expand with the binomial theorem and compare to
the series for e.) Since 1+ 1

n
> 1, this says
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and then we can check for n = 1 and n = 2 to finish the proof.

4. We say an integer d divides an integer n if there exists another integer m
such that n = dm. Notice that this definition does not use the notion of
“division,” which is right since our axioms don’t furnish us with a division

A tense and peculiar family, the Oedipuses, were they not? – Max Beerbohm, when asked what he thought of Freudianism



operation. In symbols, we write d|n to say “d divides n.” That’s a vertical
bar, not a slash as in a/b, which means “a divided by b”.

Let d, m, n, k be integers. Prove following assertions about divisibility.
(Most of these are quite easy.)

a. We have ±1|n and ±n|n.

n = (±1)(±n).

b. If d|n and n|m, then d|m.

Since d|n, n = dx for some x ∈ Z. Since n|m, m = ny for some y ∈ Z.
Plugging in, m = ny = dxy = d(xy), so d|m.

c. If d|n and d|m then d|(n +m).

Suppose d|n and d|m. By the definition, there exist integers x and y such
that n = dx and m = dy. But then n+m = dx + dy = d(x + y). Since
we know x+ y ∈ Z, we see that d|(n+m).

d. If d|(n+m) and d|n then d|m.

Exactly the same argument: we have n+m = dx and n = dy, from which
we see that m = (n +m) − n = d(x − y), and certainly x − y ∈ Z, so
d|m.

e. If d|n then d|mn for any m.

We have d|n, so n = dx for some x. But then mn = dxm = d(xm), so
d|mn.

f. If d|n and d|m then d|(rm + sn) for all r, s ∈ Z.

Use (e) twice, then (c).

g. For every k �= 0, we have k|0 but 0 � k. (As usual, crossing the symbol
means negation, so this says “0 does not divide k.”)

Who does Polyphemus hate more than Odysseus? Nobody!



0 = k0 shows that k|0. If k is not zero there is no x such that k = 0x, so
0 � k.

h. If k|1, then k = ±1. (You’ll need to use the fact that 1 is the smallest
element of N.)

Suppose 1 = kx. First of all, we know k is not zero. Next, since kx =
(−k)(−x), if k is a divisor, then so is −k.

So we want to show that any positive divisor must equal 1. Assume k is
positive, in which case so is x. Since 1 is the smallest positive number,
either k = 1 or k > 1. But if k > 1, kx > x � 1, so in particular kx > 1.
Hence we must have k = 1 if k is positive, k = −1 if k is negative.

i. If m|n and n|m, then m = ±n.

We have n = mx and m = ny. Substituting one into the other we get
n = nyx. If n = 0, then it’s clear that m = 0. Otherwise, we can cancel
n to conclude that yx = 1. From the previous result, y = ±1 and so
m = ±n.

5. NTG, Exercise 2.11.15.

The difference between two numbers is divisible by 100 when their last two digits
are the same. Since we are supposed to use the pigeonhole principle, that’s a
clue: we should put two numbers in the same box when the last two digits of
their squares are the same.

That makes 100 boxes, alas, any we are only given 52 things to put into the
boxes. But remember it is the squares! Not all pairs are digits are possible for
squares.

How do we find which ones can happen? Essentially by noticing that if two
numbers have the same two last digits so do their squares: if

a = 100k+ n and b = 100�+ n

with 0 � n � 99, then

a2 = 100(100k2 + 2kn) + n2 and b2 = 100(100�2 + 2�n) + n2,

If this sentence is true, then Santa Claus exists.



so both a2 and b2 have the same last two digits as n2. I don’t want to think too
hard, so we could run to GP and type

gp > for(n=1,99,print(n^2%100))

To get all possible numbers. That gives a list, but I don’t care about the list, just
about counting them. How many are there? Well, there’s a trick: (100 − n)2 =
100(100− 2n) + n2 has the same last two digits as n2. So that means that

02, 12, . . . , 502

already gives all possible last two digits. There are 51 numbers on that list. (By
homework theory, we should have expected that: otherwise why would be prob-
lem say 52 numbers?) OK, we have 52 numbers and 51 boxes, so two of the
numbers are in the same box, so their squares end with the same two digits, so
the difference of their squares is divisible by 100.

If you do run the GP command, you see that the possible digits are actually

{00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96}

There are only 22 possibilities, which shows that 52 can be replaced with 23. . .
but it makes the problem harder.

6. An integer n ∈ Z is called prime if it has exactly four divisors, which,
by the previous problem, will have to be ±1 and ±n. (Note that 1 and −1

are not prime, since they have only two divisors. Note also that 0 is not
prime.) An integer n ∈ Z is called composite if it is neither zero, nor ±1,
nor a prime. Prove that if n ∈ Z, n � 2, then there exists a prime number p
such that p|n.

The easiest proof is by complete induction. Clearly 2 is divisible by 2, so the base
case is true.

Suppose the result is true for all integers a such that 2 � a � k.
Let n = k + 1. If n is prime, then since n|n we can take p = n and the

theorem is true. If not, we know that n = ab with neither a nor b equal to ±n

or ±1. Since n is positive we can assume a and b are positive. Then we must
have 2 � a � k. By the induction hypothesis there is a prime p such that p|a.
Since n = ab, it follows that p|n as well.

God invented the church to give atheists a fighting chance. – Kim Fabricius



7. In a long corridor at the High School in Metropolis, there are 10, 000

lockers in a row, all closed. Then 10, 000 students walk by, and do the
following:

• The first student opens all the lockers.

• The second student closes every second locker. (So now locker 1 is
open, 2 is closed, 3 is open, etc.)

• The third student changes the state of every third locker: if it is open,
she closes it, if it is closed, she opens it.

• The fourth student changes the state of every fourth locker.

• And so on, until the 10, 000th student changes the state of the 10, 000th
locker.

At the end of the process, which lockers are open?
(Note that a good solution to this is one in which the number 10, 000

is irrelevant, that is, one that would work just as well if there were 1012

lockers.)

The first thing to notice is that the lockers that are open at the end are exactly
those whose numbers have an odd number of divisors, since the d-th student
changes the state of the n-th locker exactly when d|n.

So it boils down to deciding which numbers have an odd number of divisors.
But divisors come in pairs: if d|n, then n = dx and x also divides n. The only
case in which this does not yield two distinct divisors is when d = x, that is, when
n = d2 is a square. Since in all other cases the divisors come in pairs, the squares
are exactly the numbers which have an odd number of divisors. Hence lockers
1, 4, 9, 16, 25, etc. are the ones that are open at the end.

8. Use the division theorem with q = 4 to show that 19 cannot be written as
the sum of two squares. (Of course this can be done easily with a brute force
search as well, but see the next question.) Can 1, 871, 266, 191 be written as
the sum of two squares? Can you state a general theorem?

The idea is to exploit the uniqueness of the remainder.
When we divide an integer by 4 we get 4q+ r with r = 0, 1, 2, 3.

Hey, not all of Mozart’s paintings were perfect. – Andy Reid, head coach of the Kansas City Chiefs



a. If n = 4q, then n2 = 16q2 = 4(4q2) has remainder 0.

b. If n = 4q+ 1, then n2 = 16q2+ 8q+ 1 = 4(4q2+ 2q)+ 1 has remainder
1.

c. If n = 4q+ 2, then n2 = 16q2 + 16q+ 4 has remainder 0.

d. If n = 4q + 3, then n2 = 16q2 + 24q + 9 = 4(4q2 + 6q + 2) + 1 has
remainder 1.

So any square has remainder 0 or 1. Now

a. 4q+ 4q ′ = 4(q+ q ′) has remainder 0.

b. 4q+ (4q ′ + 1) = 4(q+ q ′) + 1 has remainder 1.

c. (4q+ 1) + (4q ′ + 1) = 4(q+ q ′) + 2 has remainder 2.

So the sum of two squares always has remainder 0, 1, or 2. Since 19 = 16+3 has
remainder 3, it cannot be equal to the sum of two squares. The same applies to
1, 871, 266, 191, which also has remainder 3 (just divide!). The general theorem
is: if the remainder of n after division by 4 is r = 3, then n cannot be written as
the sum of two squares.

Be yourself. Unless you can be Batman. Then be Batman.


