MA3 57, Spring 2020 - Problem Set I

This assignment is due on Friday, February 14. Most of the problems have to do with the axioms for \mathbb{Z} and with divisibility. I will use NTG to refer to our textbook, Number Theory and Geometry.

At the end of the problem set there is a problem marked "To Explore." It is not part of the problem set, but it is something interesting you might want to think about.
I. Prove from the axioms that if $a \in \mathbb{Z}$ and $a \neq 0$, then $a^{2} \in \mathbb{N}$. In other words, every nonzero square is positive.
2. NTG, Exercise 2.11.2.
3. NTG, Exercise 2.11.9. (Induction practice.)
4. We say an integer d divides an integer \mathfrak{n} if there exists another integer m such that $\mathrm{n}=\mathrm{dm}$. Notice that this definition does not use the notion of "division," which is right since our axioms don't furnish us with a division operation. In symbols, we write $d \mid n$ to say " d divides n." That's a vertical bar, not a slash as in a / b, which means "a divided by b".

Let $\mathrm{d}, \mathrm{m}, \mathrm{n}, \mathrm{k}$ be integers. Prove following assertions about divisibility. (Most of these are quite easy.)
a. We have $\pm 1 \mid \mathrm{n}$ and $\pm \mathrm{n} \mid \mathrm{n}$.
b. If $\mathrm{d} \mid \mathrm{n}$ and $\mathrm{n} \mid \mathrm{m}$, then $\mathrm{d} \mid \mathrm{m}$.
c. If $d \mid n$ and $d \mid m$ then $d \mid(n+m)$.
d. If $d \mid(n+m)$ and $d \mid n$ then $d \mid m$.
e. If $\mathrm{d} \mid \mathrm{n}$ then $\mathrm{d} \mid \mathrm{mn}$ for any m .
f. If $d \mid n$ and $d \mid m$ then $d \mid(r m+s n)$ for all $r, s \in \mathbb{Z}$.
g. For every $k \neq 0$, we have $k \mid 0$ but $0 \nmid k$. (As usual, crossing the symbol means negation, so this says " 0 does not divide k.")
h. If $k \mid 1$, then $k= \pm 1$. (You'll need to use the fact that 1 is the smallest element of \mathbb{N}.)
i. If $m \mid n$ and $n \mid m$, then $m= \pm n$.
5. NTG, Exercise 2.II.I 5.
6. An integer $n \in \mathbb{Z}$ is called prime if it has exactly four divisors, which, by the previous problem, will have to be ± 1 and $\pm n$. (Note that 1 and -1 are not prime, since they have only two divisors. Note also that 0 is not prime.) An integer $n \in \mathbb{Z}$ is called composite if it is neither zero, nor ± 1, nor a prime. Prove that if $n \in \mathbb{Z}$, $n \geqslant 2$, then there exists a prime number p such that $p \mid n$.
7. In a long corridor at the High School in Metropolis, there are 10,000 lockers in a row, all closed. Then 10,000 students walk by, and do the following:

- The first student opens all the lockers.
- The second student closes every second locker. (So now locker 1 is open, 2 is closed, 3 is open, etc.)
- The third student changes the state of every third locker: if it is open, she closes it, if it is closed, she opens it.
- The fourth student changes the state of every fourth locker.
- And so on, until the 10,000 th student changes the state of the 10,000 th locker.

At the end of the process, which lockers are open?
(Note that a good solution to this is one in which the number 10,000 is irrelevant, that is, one that would work just as well if there were 10^{12} lockers.)
8. Use the division theorem with $\mathrm{q}=4$ to show that 19 cannot be written as the sum of two squares. (Of course this can be done easily with a brute force search as well, but see the next question.) Can $1,871,266,191$ be written as the sum of two squares? Can you state a general theorem?

To Explore: In many parts of the ancient world, fractions were expressed in the following manner. Given any positive rational number x, people would express in a way equivalent to

$$
x=n+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{k}}
$$

where $n, a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{Z}, n \geqslant 0$ and $2 \leqslant a_{1}<a_{2}<\cdots<a_{k}$. (In particular, repeated denominators were not allowed.) For example, the fraction we know as $\frac{2}{5}$ was given as $\frac{1}{3}+\frac{1}{15}$. Such representations were used in Ancient Egypt, so they are often referred to as "Egyptian fractions."

Explore this idea. Can you prove such a representation always exists? If so, is there an algorithm to find it? Are such representations unique? If they are not unique, it there a way to choose an optimal one?

