
ma357, Spring 2020 — Problem Set 1

This assignment is due on Friday, February 14. Most of the problems have to do
with the axioms for Z and with divisibility. I will use NTG to refer to our textbook,
Number Theory and Geometry.

At the end of the problem set there is a problem marked “To Explore.” It is
not part of the problem set, but it is something interesting you might want to think
about.

1. Prove from the axioms that if a ∈ Z and a �= 0, then a2 ∈ N. In other words,
every nonzero square is positive.

2. NTG, Exercise 2.11.2.

3. NTG, Exercise 2.11.9. (Induction practice.)

4. We say an integer d divides an integer n if there exists another integer m such that
n = dm. Notice that this definition does not use the notion of “division,” which is
right since our axioms don’t furnish us with a division operation. In symbols, we
write d|n to say “d divides n.” That’s a vertical bar, not a slash as in a/b, which
means “a divided by b”.

Let d, m, n, k be integers. Prove following assertions about divisibility. (Most
of these are quite easy.)

a. We have ±1|n and ±n|n.

b. If d|n and n|m, then d|m.

c. If d|n and d|m then d|(n+m).

d. If d|(n+m) and d|n then d|m.

e. If d|n then d|mn for any m.

f. If d|n and d|m then d|(rm+ sn) for all r, s ∈ Z.

g. For every k �= 0, we have k|0 but 0 � k. (As usual, crossing the symbol means
negation, so this says “0 does not divide k.”)

h. If k|1, then k = ±1. (You’ll need to use the fact that 1 is the smallest element
of N.)

i. If m|n and n|m, then m = ±n.

5. NTG, Exercise 2.11.15.

Nothing is so smiple that it can’t get screwed up.



6. An integer n ∈ Z is called prime if it has exactly four divisors, which, by the
previous problem, will have to be ±1 and ±n. (Note that 1 and −1 are not prime,
since they have only two divisors. Note also that 0 is not prime.) An integer n ∈ Z
is called composite if it is neither zero, nor ±1, nor a prime. Prove that if n ∈ Z,
n � 2, then there exists a prime number p such that p|n.

7. In a long corridor at the High School in Metropolis, there are 10, 000 lockers in
a row, all closed. Then 10, 000 students walk by, and do the following:

• The first student opens all the lockers.

• The second student closes every second locker. (So now locker 1 is open, 2 is
closed, 3 is open, etc.)

• The third student changes the state of every third locker: if it is open, she
closes it, if it is closed, she opens it.

• The fourth student changes the state of every fourth locker.

• And so on, until the 10, 000th student changes the state of the 10, 000th locker.

At the end of the process, which lockers are open?
(Note that a good solution to this is one in which the number 10, 000 is irrele-

vant, that is, one that would work just as well if there were 1012 lockers.)

8. Use the division theorem with q = 4 to show that 19 cannot be written as the
sum of two squares. (Of course this can be done easily with a brute force search as
well, but see the next question.) Can 1, 871, 266, 191 be written as the sum of two
squares? Can you state a general theorem?

To Explore: In many parts of the ancient world, fractions were expressed in the
following manner. Given any positive rational number x, people would express in
a way equivalent to

x = n+
1

a1

+
1

a2

+ · · ·+ 1

ak

,

where n, a1, a2, . . . , ak ∈ Z, n � 0 and 2 � a1 < a2 < · · · < ak. (In particular,
repeated denominators were not allowed.) For example, the fraction we know as 2

5

was given as 1
3
+ 1

15
. Such representations were used in Ancient Egypt, so they are

often referred to as “Egyptian fractions.”
Explore this idea. Can you prove such a representation always exists? If so,

is there an algorithm to find it? Are such representations unique? If they are not
unique, it there a way to choose an optimal one?

It is a mercy that there are so many languages that one does not understand. – Theodore Dalrymple


