1. Prove that for any odd prime, \(p \),
\[
\frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor \equiv \begin{cases}
0 \pmod{2} & \text{if } p \equiv \pm 1 \pmod{8} \\
1 \pmod{2} & \text{if } p \equiv \pm 3 \pmod{8}.
\end{cases}
\]

Since \(p \equiv m \pmod{8} \) means \(p = 8k + m \) for some \(k \in \mathbb{Z} \) we will work with that. Here we consider \(m = \pm 1 \) or \(\pm 3 \). These are the only possible residues for \(p \pmod{8} \) since \(p \) is odd. Observe that
\[
\left\lfloor \frac{p}{4} \right\rfloor = \left\lfloor 2 + \frac{m}{4} \right\rfloor \equiv \begin{cases}
0 \pmod{2} & \text{if } m = 1, 3 \\
1 \pmod{2} & \text{if } m = -1, -3.
\end{cases}
\]

Also observe that
\[
\frac{p-1}{2} = 4k + \frac{m-1}{2} \equiv \begin{cases}
0 \pmod{2} & \text{if } m = 1, -3 \\
1 \pmod{2} & \text{if } m = -1, 3.
\end{cases}
\]

So
\[
\frac{p-1}{2} - \left\lfloor \frac{p}{4} \right\rfloor \equiv \begin{cases}
0 - 0 \equiv 0 \pmod{2} & \text{if } m = 1 \\
1 - 1 \equiv 0 \pmod{2} & \text{if } m = -1 \\
1 - 0 \equiv 1 \pmod{2} & \text{if } m = 3 \\
0 - 1 \equiv 1 \pmod{2} & \text{if } m = -3.
\end{cases}
\]

which is what we were trying to show.

2. Let \(n = 2^k m \) where \(k, m \in \mathbb{N} \) and \(m \) is odd. Show that \(a \) is a quadratic residue \((\pmod {n})\) iff \(a \) is a quadratic residue \((\pmod {2^k})\) and \(a \) is a quadratic residue \((\pmod {m})\).

If \(m \) is odd then \((2^k, m) = 1\). We see that \(a \) is a quadratic residue \((\pmod {n})\) iff there exists \(x \in \mathbb{Z} \) such that \(n|(a - x^2) \) which happens iff \(\exists x \in \mathbb{Z} \) such that \(2^k, m|(a - x^2) \) which happens iff \(\exists x_1, x_2 \in \mathbb{Z} \) such that
\[
\begin{align*}
x_1^2 &\equiv a \pmod{2^k} \\
x_2^2 &\equiv a \pmod{m}
\end{align*}
\]
since a simultaneous solution \(x \in \mathbb{Z} \) produces \(x_1, x_2 \) and conversely \(x_1 \) and \(x_2 \) can produce \(x \) by the Chinese Remainder Theorem. This last iff gave that \(a \) is a quadratic residue \((\pmod {2^k})\) and \((\pmod {m})\) and we’re done.

3. Prove that
\[
f(x, y) = x^2 + y^2, \quad g(x, y) = x^2 - y^2, \quad h(x, y) = 2xy
\]
are all inequivalent quadratic forms.

We see \(\text{disc}(f) = -4 \) and \(\text{disc}(g) = \text{disc}(h) = 4 \) so \(f \) is not equivalent to \(g \) or \(h \) since equivalent forms have the same discriminant. Furthermore, we see \(h(x, y) \) is always even whereas \(g(1, 0) = 1 \). Since equivalent forms have the same set of values, we have that \(g \) is not equivalent to \(h \).

4. Prove that for
\[
 f(x, y) = x^2 + xy + 5y^2 \quad \text{and} \quad g(x, y) = 7x^2 + 17xy + 11y^2,
\]
that \(f \sim g \) and find \(U \in SL_2(\mathbb{Z}) \) such that \(f \circ U = g \).

We observe that \(x^2 + xy + 5y^2 \) is in reduced form, so it should suffice to show that \(g \) reduced is equal to \(g \). Let \(G_0 \) be the matrix of \(g(x, y) \):
\[
 G_0 = \begin{bmatrix}
 7 & 17 \\
 \frac{17}{2} & 11
 \end{bmatrix}.
\]

We recall the “Step 1” and “Step 2” method to reduce a quadratic form from lecture. First we see that \(7 < 11 \) so we can skip Step 1 for now, so we go to Step 2. We want to find \(n \in \mathbb{Z} \) such that \(17 + 2(7)n \in (-7, 7] \). We see that \(n = -1 \) does this so we take
\[
 G_1 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 7 & \frac{17}{2} \\ \frac{17}{2} & 11 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{7}{2} & \frac{3}{2} \\ \frac{3}{2} & 1 \end{bmatrix}
\]
to be our new matrix. But now we see that \(7 > 1 \) so we do Step 1 to get
\[
 G_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 7 & \frac{3}{2} \\ \frac{3}{2} & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 7 \end{bmatrix}.
\]

But now \(-3 > 1 \) so we do Step 2 again, now we want to find \(n \in \mathbb{Z} \) such that \(-3 + 2(1)n \in (-1, 1] \). We see \(n = 2 \) does this so we get
\[
 G_3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{2} \\ \frac{3}{2} & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 5 \end{bmatrix}
\]
and we see \(G_3 \) is the matrix for \(f(x, y) \), so \(f \sim g \). Now
\[
 G_3 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} G_0 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix} G_0 \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}.
\]

So we have \(f = g \circ \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix} \), which means that \(g = f \circ \begin{bmatrix} -2 & -3 \\ 1 & 1 \end{bmatrix} \).

5. a) Compute \(h(-19) \).
b) Show that for
\[f(x, y) = 5x^2 + 21xy + 23y^2, \quad g(x, y) = 209x^2 + 247xy + 73y^2, \quad h(x, y) = 17x^2 + 61xy + 55y^2, \]
that \(f \sim g \sim h \).

a) Recall that \(h(d) \) is the number of equivalence classes of positive definite quadratic forms with discriminant \(d \). Since every quadratic form is equivalent to a reduced form and all reduced forms have coefficients that satisfy \(a, |b|, c \leq \frac{1}{3}|d| \), to compute \(h(-19) \) we just need to find all \(a, b, c \in \mathbb{Z} \) such that \(a, |b|, c \leq 6 \) and \(b^2 - 4ac = -19 \) with \(-a < b \leq a < c \) or \(0 \leq b \leq a = c \).

Since \(|b| \leq 6 \) our options for \(b^2 \) are 0, 1, 4, 9, 16, 25, 36. Since \(b^2 + 19 = 4ac \) we require \(b^2 + 19 \) to be divisible by 4 so our only options are \(b^2 + 19 = 20, 28, 44 \). Respectively those each give \(ac = 5, 7, 11 \), but each of those are prime which means that if \(ac = 7, 11 \) then either \(a \) or \(c \) must be 7 or 11, breaking the bound of \(a, c \leq 6 \). So the only possible reduced form with \(\text{disc}(f) = -19 \) is \(f(x, y) = x^2 + xy + 5y^2 \) and so \(h(-19) = 1 \).

b) We see that \(\text{disc}(f) = 21^2 - 4(5)(23) = -19 \) and \(\text{disc}(g) = 247^2 - 4(209)(73) = -19 \) and \(\text{disc}(h) = 61^2 - 4(17)(55) = -19 \). So all \(f, g, h \) are equivalent to a reduced form with discriminant \(-19 \). By part (a) there is only one such form and so \(f, g, h \) are all equivalent to it and thus each other.

6. Prove that \(-8\) is a quadratic residue \((\mod p) \) for a prime \(p \) if and only if \(p \equiv 1, 2, \) or \(3 \) \((\mod 8) \).

First we note that \(-8 \equiv 0 \pmod{2} \) so \(-8\) is a quadratic residue \((\mod 2) \) and thus \((\mod p) \) for all \(p \equiv 2 \pmod{8} \) since \(p = 2 \) is the only one.

So now we can suppose \(p \) is an odd prime, then \(p \equiv 1, \) or \(3 \pmod{8} \). We have only to determine when \(\left(\frac{-8}{p} \right) = 1 \), so

\[
\left(\frac{-8}{p} \right) = \left(\frac{-2}{p} \right) \left(\frac{2}{p} \right)^2 = \left(\frac{-2}{p} \right) \left(\frac{2}{p} \right) = \left(\frac{-1}{p} \right) \left(\frac{2}{p} \right)
\]

so we have that \(-8\) is a quadratic residue \((\mod p) \) iff \(\left(\frac{-1}{p} \right) = \left(\frac{2}{p} \right) = \pm 1 \). We see that

\[
\left(\frac{-1}{p} \right) = \left(\frac{2}{p} \right) = 1 \text{ exactly when } p \equiv 1 \pmod{8} \text{ and } \left(\frac{-1}{p} \right) = \left(\frac{2}{p} \right) = -1 \text{ exactly when } p \equiv 3 \pmod{8}.
\]

So \(-8\) is a quadratic residue \((\mod 4p) \) for odd \(p \) exactly when \(p \equiv 1 \) or \(3 \pmod{8} \) and so we are done.

7. Suppose \(n = x^2 + 2y^2 \) for \(x, y \in \mathbb{Z} \) such that \(p|n \) with \(p \) a prime where \(p \equiv 5 \) or 7 \((\mod 8) \). Prove that \(p^2|n \) and that \(n/p^2 = (x')^2 + 2(y')^2 \) for some \(x', y' \in \mathbb{Z} \).
If \(n = x^2 + 2y^2 \) and \(p|n \) then \(x^2 = -2y^2 \pmod{p} \). So we must have \(x \equiv y \equiv 0 \pmod{p} \) or else \(x, y \) are invertible. In the latter case we get \((xy^{-1})^2 \equiv -2 \pmod{p}\) which means \(-2\) is a quadratic residue \(\pmod{p} \), but in the previous Problem we showed this can’t happen when \(p \equiv 5 \) or \(7 \). So \(x \equiv y \equiv 0 \pmod{p} \) so \(x = x'p \) and \(y = y'p \) for \(x', y' \in \mathbb{Z} \) and we see \(n = (x'p)^2 + 2(y'p)^2 = p^2((x')^2 + 2(y')^2) \) and so \(p^2|n \) and \(n/p^2 = (x')^2 + 2(y')^2 \), and we’re done.

8. a) Compute \(h(-8) \).

b) Use part (a) and Problems 6 and 7 to show that for \(n \in \mathbb{N}, n = x^2 + 2y^2 \) for \(x, y \in \mathbb{Z} \) iff all primes \(p|n \) of the form \(p \equiv 5 \) or \(7 \pmod{8} \) have even powers in the prime factorization of \(n \).

a) Following the same reasoning as in Problem 5, we just need to check \(a, |b|, c \leq \frac{1}{3} |−8| \) so \(a, |b|, c \leq 2 \). So the choices for \(b^2 \) are just 0, 1 and 4 and given \(b^2 - 4ac = -8 \) we have \(b^2 + 8 = 4ac \) so we must have \(b^2 = 0 \) or 4 for \(b^2 + 8 \) to be divisible by 4. If \(b^2 = 4 \) then \(ac = 3 \) which means \(a \) or \(c \) is 3, contradicting that \(a, c \leq 2 \) so \(b = 0 \) and \(ac = 2 \). Since \(c \geq a \) we get \(c = 2 \) and \(a = 1 \). So the only reduced quadratic form with discriminant \(-8\) is \(x^2 + 2y^2 \) and thus \(h(-8) = 1 \).

b) By Problem 7 we know that if \(p|n \) with \(p \equiv 5, 7 \pmod{8} \) then \(p^2|n \) and we can reduce the problem to \(n' \) where \(n = p^2n' \). We do this finitely many times until we can get rid of all the primes of this form in the factorization of \(n \) and we see that since we remove them by powers two at a time they must have even powers in the prime factorization.

To show that this is sufficient, suppose that all primes \(p|n \) of the form \(p \equiv 5 \) or \(7 \pmod{8} \) have even powers in the prime factorization of \(n \). Note that if \(n = mr^2 \) with \(m, r \in \mathbb{N} \) where \(m \) is square-free (all the powers in the prime factorization are 1) then if \(m = x^2 + 2y^2 \) for \(x, y \in \mathbb{Z} \) then \(n = (xr)^2 + 2(yr)^2 \). So without loss of generality we can consider \(m \) which has no prime factors of the form \(p \equiv 5 \) or \(7 \pmod{8} \) since they are all included in \(r^2 \).

Now, \(m = 2^kp_1 \cdots p_t \) where \(k = 0 \) or 1 and the primes \(p_j \equiv 1 \) or \(3 \pmod{8} \). In lecture we proved that \(m \) can be properly represented by a quadratic form of discriminant \(-8 \) iff \(-8 \) is a quadratic residue \(\pmod{4m} \). So by the Chinese Remainder Theorem \(-8 \) is a quadratic residue \(\pmod{4m} \) iff \(-8 \) is a quadratic residue \(\pmod{4 \cdot 2^k} \) and \(\pmod{p_j} \) for all \(p_j \). But \(-8 \equiv 0 \pmod{4} \) and \(\pmod{8} \), thus \(\pmod{4 \cdot 2^k} \) and by Problem 6 we know that \(-8 \) is a quadratic residue for all \(p_j \). So \(m \) is properly represented by a quadratic form of discriminant \(-8 \), which must be equivalent to \(x^2 + 2y^2 \) by part (a) since there is only one reduced quadratic form of discriminant \(-8 \), and so \(m = x^2 + 2y^2 \) for \(x, y \in \mathbb{Z} \) and so we are done.

9. a) Compute \(h(-7) \).

b) Show that any prime \(p = x^2 + xy + 2y^2 \) for some \(x, y \in \mathbb{Z} \) iff \(p \not\equiv 3, 5 \) or \(6 \pmod{7} \).
a) As in Problem 8 we just need to check $a, |b|, c \leq \frac{1}{3} | - 7 |$ so $a, |b|, c \leq 2$. The choices for b^2 are just 0, 1 and 4 and we need $b^2 + 7 = 4ac$ so $b = \pm 1$ and $ac = 2$ so $a = 1$ and $b = 2$ and since $b \in (-a, a]$ we have $b = 1$. So the only reduced form with discriminant -7 is $x^2 + xy + 2y^2$ and so $h(-7) = 1$.

b) From lecture we know that n is properly represented by some quadratic form with discriminant -7 iff -7 is a quadratic residue (mod 4n). Primes can only be given as values of quadratic forms if they are properly represented because if $(x, y) = z > 1$ then $z^2 | f(x, y)$ and so $f(x, y)$ is not prime. Now by part (a) all quadratic forms with discriminant -7 are equivalent to $x^2 + xy + 2y^2$ so p is given by $x^2 + xy + 2y^2$ iff -7 is a quadratic residue (mod 4p).

Now we see that $-7 \equiv 1 \pmod{8}$ and $-7 \equiv 7^2 \pmod{28}$ so we have representation in the only cases when $p \equiv 0, 2 \pmod{7}$. For everything else, $(-7, 4p) = 1$ and we observe that since $-7 \equiv 1 \pmod{4}$ so -7 is a quadratic residue (mod 4) and so we only have to check $\left(\frac{-7}{p} \right) = 1$ to see exactly when -7 is a quadratic residue mod 4p. Observe

$$\left(\frac{-7}{p} \right) = \left(\frac{-1}{p} \right) \left(\frac{7}{p} \right) = \left\{ \begin{array}{ll} \left(\frac{7}{p} \right) & \text{if } p \equiv 1 \pmod{4} \\ (-1) \left(\frac{-7}{p} \right) & \text{if } p \equiv 3 \pmod{4} \end{array} \right\} = \left(\frac{p}{7} \right)$$

and a quick search shows the only nonzero quadratic residues (mod 7) are 1, 2, and 4. So for $(-7, 4p) = 1$ we have -7 is a quadratic residue exactly when $p \equiv 1, 2$ or 4 and thus for all primes p we have $p = x^2 + xy + 2y^2$ exactly when $p \not\equiv 3, 5$ or 6.

10. Let the prime p be such that $p \equiv 7 \pmod{8}$. Show that

$$p = x^2 + y^2 + z^2$$

has no solutions for $x, y, z \in \mathbb{Z}$.

For any $x \in \mathbb{Z}$, $x^2 \equiv 0, 1$ or $4 \pmod{8}$. So there are only 10 ways to add three squares (mod 8):

$$0 + 0 + 0 \equiv 0, \quad 0 + 0 + 1 \equiv 1, \quad 0 + 0 + 4 \equiv 4, \quad 0 + 1 + 4 \equiv 5, \quad 0 + 1 + 1 \equiv 2, \quad 0 + 4 + 4 \equiv 0, \quad 1 + 1 + 1 \equiv 3, \quad 1 + 1 + 4 \equiv 6, \quad 1 + 4 + 4 \equiv 1, \quad 4 + 4 + 4 \equiv 4$$

none of these give 7 (mod 8), so if $p \equiv 7 \pmod{8}$, by reducing the equation to $7 \equiv x^2 + y^2 + z^2 \pmod{8}$ we see there are no possible solutions.