1. a) Suppose $n = p_1 \cdots p_k$ where the p_j are distinct primes. Give a bound on the maximum number of possible solutions $x \pmod{n}$ to the equation:

$$a^m x^m + a_{m-1} x^{m-1} \cdots a_1 x + a_0 \equiv 0 \pmod{n}$$

where each $a_j \in \mathbb{Z}$ and $(a_m, n) = 1$. Explain your reasoning.

b) Count the number of solutions $x \pmod{40}$ to the equation

$$(x - 1)(x + 1) \equiv 0 \pmod{40}.$$

without explicitly finding them all, and explain your reasoning.

a) We see that

$$a^m x^m + a_{m-1} x^{m-1} \cdots a_1 x + a_0 \equiv 0 \pmod{n}$$

iff

$$a^m x^m + a_{m-1} x^{m-1} \cdots a_1 x + a_0 \equiv 0 \pmod{p_j} \forall p|n.$$

so we have a solution (mod n) if and only if we have a simultaneous solution (mod p_j) for each $1 \leq j \leq k$. Furthermore, if $c_j \pmod{p_j}$ is a solution (mod p_j) for $1 \leq j \leq k$ then by the Chinese Remainder Theorem we can find $x \equiv c_j \pmod{p_j}$ for each j that is unique (mod n). We see that by Lagrange’s theorem there are at most m distinct possible c_js (mod p_j) for each j and each set of $\{c_1, c_2, \ldots, c_k\}$ produces a distinct solution (mod n). So we see there are, at most, m^k solutions (mod n).

b) As in part (a), we see that $(x - 1)(x + 1) \equiv 0 \pmod{40}$ iff $(x - 1)(x + 1) \equiv 0 \pmod{8}$ and (mod 5). We see $x \equiv \pm 1 \pmod{5}$ are solutions and, by Lagrange’s Theorem, we have that these must be the only solutions (mod 5). Since 8 is not prime, we have to check for more. In fact, we see that 8|(x - 1)(x + 1) iff x is odd so we have the solutions $x \equiv 1, 3, 5, 7 \pmod{8}$. By the Chinese Remainder Theorem this means we can construct eight distinct solutions (mod 40).

2. Show 2 is a primitive root (mod 19).

We see that $2^2 \equiv 4 \pmod{19}$ and $2^3 \equiv 8 \pmod{19}$, $2^6 \equiv 7 \pmod{19}$ and $2^9 \equiv -1 \pmod{19}$. Since $(2, 19) = 1$, the order of 2 must divide $\phi(19) = 18$, but is not 1,2,3,6, or 9, so the order of 2 must be 18. Thus it is a primitive root.

3. Use primitive roots and indices to count the number of integer pairs (x, y) (mod 19) that are solutions to

$$11x^6 \equiv y^7 \pmod{19}.$$
From the previous problem we know that 2 is a primitive root (mod 19). We also know that $2^3 \cdot 2^9 \equiv (8)(-1) \equiv 11$ (mod 19) so the index of 11 with respect to the primitive root of 2 is $3 + 9 = 12$. We have the trivial solution $x \equiv y \equiv 0$ (mod 19) and for every other solution we see $(x, 19) = (y, 19) = 1$. So we can take the indices of x and y:

$$11x^6 \equiv y^7 \quad (\text{mod } 19) \Rightarrow 12 + 6\text{ind}(x) \equiv 7\text{ind}(y) \quad (\text{mod } 18).$$

Since $(12, 18) = 6$ and $(7, 6) = 1$, we only have solutions when $6|\text{ind}(y)$, and (mod 18) there are only 3 such values for $\text{ind}(y)$: 6, 12, and 18. In those cases the equation reduces to

$$2 + \text{ind}x \equiv 7\frac{\text{ind}(y)}{6} \quad (\text{mod } 3) \Rightarrow \text{ind}(x) \equiv 1 + \frac{\text{ind}y}{6} \quad (\text{mod } 3)$$

which has a unique solution in $\text{ind}(x)$ (mod 3) and thus 6 different solutions for $\text{ind}(x)$ (mod 18). So three possible values for y with six possible values of x for each, along with the trivial (0,0) solution gives 19 possible solutions.

4. a) Suppose a primitive root, g, exists (mod m). Show that for $n \in \mathbb{N}$, g^n is a primitive root (mod m) if and only if $(n, \phi(m)) = 1$.

b) Prove that for any $m \in \mathbb{N}_{\geq 2}$, the number of primitive roots (mod m) is either 0 or $\phi(\phi(m))$.

a) Suppose $(n, \phi(m)) = d > 1$ then $(g^n)^{\frac{\phi(m)}{d}} = (g^{\frac{m}{d}})^{\phi(m)} \equiv 1$ (mod m) by Euler’s Theorem. Thus g^n has order that divides $\phi(m)/d < \phi(m)$ so g^n is not primitive.

If $(n, \phi(m)) = 1$ then $(g^n)^k = g^{nk} \equiv 1$ (mod m) for any $k \in \mathbb{N}$ then since g is a primitive root we have $\phi(m)|nk$ but $(n, \phi(m)) = 1$ so $\phi(m)|k$. Thus the smallest k can be is $\phi(m)$, which works by Euler’s Theorem, so g^n is indeed a primitive root.

b) From part (a) we see that if a primitive root, g, exists (mod m) then all the primitive roots are g^n where $1 \leq n \leq \phi(m)$ and $(n, \phi(m)) = 1$, and there are $\phi(\phi(m))$ such n. So the number of primitive roots is either 0 or $\phi(\phi(m))$.

5. For any odd prime, p, let g be a primitive root (mod p), which we have shown to always exist.

a) Use indices to show that g^n, for $n \in \mathbb{N}$, is a quadratic residue (mod p) if and only if n is even.

b) Use part (a) to provide an alternate proof of Euler’s Criterion.

a) We see that, taking indices with respect to g (mod p) we have

$$g^n \equiv x^2 \quad (\text{mod } p) \iff n \equiv 2\text{ind}(x) \quad (\text{mod } p - 1)$$
which, since \(2|(p - 1)\), this has a solution if and only if \(2|n\). Thus \(g^n\) is a quadratic residue if and only if \(n\) is even.

b) Let \(r = \frac{1}{2}(p - 1)\). We see \(g^r \equiv -1\) since \((g^r)^2 = g^{2r} \equiv 1 \pmod{p}\) and \(g^r \not\equiv 1 \pmod{p}\). If \(n\) is even then \(nr\) is a multiple of \(p - 1\) and so \((g^n)^r = g^{nr} \equiv 1 \pmod{p}\). If \(n\) is odd then \(nr \equiv r \pmod{p - 1}\) so \((g^n)^r = g^{nr} \equiv g^r \equiv -1\).

Thus we see that
\[
(g^n)^r \equiv \left(\frac{g^n}{p}\right) \pmod{p}
\]
and for every \(a\) with \((a, p) = 1\) we have \(a = g^n\) for some \(n \in \mathbb{N}\) so
\[
a^r \equiv \left(\frac{a}{p}\right) \pmod{p}
\]
and thus we’ve proven Euler’s Criterion.

6. a) Show that if \(n = n_1 n_2\) for odd \(n_1, n_2 \in \mathbb{Z}\) then
\[
\frac{1}{2}(n - 1) \equiv \frac{1}{2}(n_1 - 1) + \frac{1}{2}(n_2 - 1) \pmod{2}
\]
and
\[
\frac{1}{8}(n^2 - 1) \equiv \frac{1}{8}(n_1^2 - 1) + \frac{1}{8}(n_2^2 - 1) \pmod{2}
\]

b) Use part (a) and the properties of the Legendre symbol to show that for odd \(n \in \mathbb{N}\) that the Jacobi symbol satisfies:
\[
\left(\frac{-1}{n}\right) = (-1)^{\frac{1}{2}(n-1)} \quad \text{and} \quad \left(\frac{2}{n}\right) = (-1)^{\frac{1}{4}(n^2-1)}.
\]

c) Use part (a) and the Law of Quadratic Reciprocity to show that for odd \(n, m \in \mathbb{N}\) with \((m, n) = 1\) that the Jacobi symbol satisfies:
\[
\left(\frac{n}{m}\right) \left(\frac{m}{n}\right) = (-1)^{\frac{1}{2}(n-1)(m-1)}
\]

[Hint: Start by showing this for \(m = p\) prime and proceed from there.]

a) We note that
\[
\frac{1}{2}(n - 1) \equiv \frac{1}{2}(n_1 - 1) + \frac{1}{2}(n_2 - 1) \pmod{2} \iff n_1n_2 - 1 \equiv n_1 + n_2 - 2 \pmod{4}
\]
and so we just check that the later equality holds for \((n_1, n_2) = (1, 1), (1, 3), (3, 1), \) and \((3, 3)\), which are all the odd pairs \((mod\ 4)\).
Similarly we note that
\[
\frac{1}{8}(n^2 - 1) \equiv \frac{1}{2}(n_1^2 - 1) + \frac{1}{2}(n_2^2 - 1) \pmod{2} \iff n_1^2n_2^2 - 1 \equiv n_1^2 + n_2^2 - 2 \pmod{16}
\]
The only odd squares (mod 16) are 1 and 9 so we just check the later equality holds for \((n_1^2, n_2^2) = (1, 1), (1, 9), (9, 1),\) and \((9, 9),\) which are all the odd square pairs (mod 16). Thus we've shown both equalities hold.

b) We will prove these statements by induction on the number of prime factors of \(n\).

We know both equalities hold when \(n = p\) is prime by properties of the Legendre symbol, so suppose these equalities hold for all \(n\) with at most \(k\) prime factors. Then if \(n = p_1 \cdots p_k p_{k+1}\) not necessarily distinct primes and \(m = p_1 \cdots p_k\), we have
\[
\left(\frac{-1}{n}\right) = \left(\frac{-1}{m}\right) \left(\frac{-1}{p_{k+1}}\right) = (-1)^{\frac{1}{2}(m-1)+\frac{1}{2}(p_{k+1}-1)} = (-1)^{\frac{1}{2}(mp_{k+1}-1)} = (-1)^{\frac{1}{2}(n-1)}
\]
and
\[
\left(\frac{2}{n}\right) = \left(\frac{2}{m}\right) \left(\frac{2}{p_{k+1}}\right) = (-1)^{\frac{1}{2}(m^2-1)+\frac{1}{2}(p_{k+1}^2-1)} = (-1)^{\frac{1}{2}(m^2 p_{k+1}^2-1)} = (-1)^{\frac{1}{2}(n^2-1)}
\]
using the equivalences in part (a) and so we have the claim by induction.

c) First we will verify this by induction on the number of prime factors of \(n\) when \(m = p\) is prime. This is quadratic reciprocity when \(n = q\) is prime, so suppose
\[
\left(\frac{n}{p}\right) \left(\frac{p}{n}\right) = (-1)^{\frac{1}{2}(n-1)(p-1)}
\]
holds when \(n\) has at most \(k\) prime factors. Then if \(n = q_1 \cdots q_k q_{k+1}\) not necessarily distinct primes and \(r = q_1 \cdots q_k\), we have
\[
\left(\frac{n}{p}\right) \left(\frac{p}{n}\right) = \left(\frac{r}{p}\right) \left(\frac{p}{r}\right) \left(\frac{q_{k+1}}{p}\right) \left(\frac{p}{q_{k+1}}\right) = (-1)^{\frac{1}{2}(r-1)(p-1)+\frac{1}{2}(q_{k+1}-1)(p-1)}
\]
\[
= (-1)^{\frac{1}{2}(p-1)\left(\frac{1}{2}(r-1)+\frac{1}{2}(q_{k+1}-1)\right)} = (-1)^{\frac{1}{2}(p-1)\frac{1}{2}(q_{k+1}-1)} = (-1)^{\frac{1}{2}(p-1)(n-1)}
\]
again using the equalities from (a) which proves the claim when \(m = p\) is prime. Now suppose we have it when \(m\) has at most \(k\) prime factors, then if \(m = p_1 \cdots p_{k+1}\) with \(s = p_1 \cdots p_k\), we have
\[
\left(\frac{n}{m}\right) \left(\frac{m}{n}\right) = \left(\frac{n}{s}\right) \left(\frac{s}{n}\right) \left(\frac{p_{k+1}}{n}\right) \left(\frac{n}{p_{k+1}}\right)
\]
\[
= (-1)^{\frac{1}{2}(n-1)\left(\frac{1}{2}(s-1)+\frac{1}{2}(p_{k+1}-1)\right)} = (-1)^{\frac{1}{2}(n-1)\frac{1}{2}(sp_{k+1}-1)} = (-1)^{\frac{1}{2}(n-1)(m-1)}
\]
which proves the claim for all \(m\), and so we’re done.
7. Check to see if 42, 101, and 1234 are quadratic residues (mod 31337). [Note: 31337
is a prime.] Show your work when computing Legendre or Jacobi symbols, though you
don’t have to show long-division steps when computing remainders (just be careful, or
use a calculator for that).

First we observe that $31337 \equiv 1 \pmod{8}$ which means that \(\left(\frac{2}{31337} \right) = \left(\frac{-1}{31337} \right) = 1 \) and
we can invert via quadratic reciprocity without picking up a minus sign so

\[
\left(\frac{42}{31337} \right) = \left(\frac{2}{31337} \right) \left(\frac{3}{31337} \right) \left(\frac{7}{31337} \right) = \left(\frac{31337}{3} \right) \left(\frac{31337}{7} \right) \\
= \left(\frac{2}{3} \right) \left(\frac{5}{7} \right) = -\left(\frac{7}{5} \right) = -\left(\frac{2}{5} \right) = -(-1) = 1
\]

so 42 is a quadratic residue (mod 31337). Also

\[
\left(\frac{101}{31337} \right) = \frac{31337}{101} = \left(\frac{27}{101} \right) = \left(\frac{3}{101} \right)^3 = \left(\frac{3}{101} \right) = \left(\frac{101}{3} \right) = \left(\frac{2}{3} \right) = -1
\]

so 101 is not a quadratic residue (mod 31337). Finally

\[
\left(\frac{1234}{31337} \right) = \left(\frac{2}{31337} \right) \left(\frac{617}{31337} \right) = \left(\frac{31337}{617} \right) = \left(\frac{487}{617} \right) = \left(\frac{617}{487} \right) = \left(\frac{130}{487} \right) \\
= \left(\frac{2}{487} \right) \left(\frac{5}{487} \right) \left(\frac{13}{487} \right) = \left(\frac{487}{5} \right) \left(\frac{487}{13} \right) = \left(\frac{2}{5} \right) \left(\frac{6}{13} \right) =
- \left(\frac{2}{13} \right) \left(\frac{3}{13} \right) = \left(\frac{1}{3} \right) = 1
\]

and so 1234 is a quadratic residue (mod 31337).

8. Compute the Jacobi Symbol

\[
\left(\frac{15}{11345467650427} \right).
\]

where 11345467650427 is not a prime. Show your work. Does this tell us whether or
not 15 is a quadratic residue (mod 11345467650427)? We have

\[
\left(\frac{15}{11345467650427} \right) = \left(\frac{3}{11345467650427} \right) \left(\frac{5}{11345467650427} \right) \\
= - \left(\frac{11345467650427}{3} \right) \left(\frac{11345467650427}{5} \right) = - \left(\frac{1}{3} \right) \left(\frac{2}{5} \right) = 1
\]
This alone is not enough information to verify if 15 is a quadratic residue (mod 11345467650427), since the Jacobi symbol can only confirm that a number is not a quadratic residue.

9. Let p be an odd prime. Show that the equation

$$x^2 + bx + c \equiv 0 \pmod{p}$$

for $b, c \in \mathbb{Z}$ has solutions in $x \in \mathbb{Z}$ if and only if

$$\left(\frac{b^2 - 4c}{p}\right) = 1 \quad \text{or} \quad b^2 - 4c \equiv 0 \pmod{p}$$

If $\left(\frac{b^2 - 4c}{p}\right) = 1$ or $b^2 - 4c \equiv 0$, then $b^2 - 4c$ is a quadratic residue (mod p) so let $y \in \mathbb{Z}$ be such that $y^2 \equiv b^2 - 4c$ (mod p). Since p is odd, 2 is invertible (mod p) so choose $z \in \mathbb{Z}$ such that

$$z \equiv 2^{-1}(-b + y) \pmod{p}.$$

which is inspired by the quadratic equation. We see that

$$z^2 + bz + c \equiv 4^{-1}(b^2 - 2by + y^2) + 2^{-1}b(-b + y) + c$$

$$\equiv 4^{-1}(2b^2 - 2by - 4c) - 2^{-1}b^2 + 2^{-1}by + c \equiv 2^{-1}(b^2 - b^2 + by + by) - c + c \equiv 0 \pmod{p}$$

so indeed the polynomial has solutions (mod p).

Now suppose the polynomial has solutions (mod p), let $y \in \mathbb{Z}$ be a solution then

$$y^2 + by + c \equiv 0 \pmod{p} \Rightarrow 4(y^2 + by + c) \equiv 0 \pmod{p} \Rightarrow (2y + b)^2 - (b^2 - 4c) \equiv 0 \pmod{p}$$

so

$$(2y + b)^2 \equiv b^2 - 4c \pmod{p}$$

and so $b^2 - 4c$ is a quadratic residue (mod p), so $\left(\frac{b^2 - 4c}{p}\right) = 1$ or $p | (b^2 - 4c)$.

10. For any $N \in \mathbb{N}$, show for every prime $p | (4N^2 + 1)$ that $p \equiv 1 \pmod{4}$. Use this to show that there are infinitely many primes $p \equiv 1 \pmod{4}$.

If $p | (4N^2 + 1)$ then $4N^2 \equiv -1 \pmod{p}$ so $(2N)^2 \equiv -1 \pmod{p}$. Since p must be odd we have $\left(\frac{-1}{p}\right) = 1$ which we know holds iff $p \equiv 1 \pmod{4}$, thus every prime dividing $4N^2 + 1$ is equivalent to 1 (mod 4).

Now let p_1, \ldots, p_k be a finite list of distinct primes equivalent to 1 (mod 4) and let

$$N = p_1 \cdots p_k.$$

Then there exists some prime $q | (4N^2 + 1)$ that is not on that list but by the above claim is also equivalent to 1 (mod 4). We can add q to the list and by induction we can make the list arbitrarily large, and so there are infinitely many such primes.