Proposition 2. If \(\lim_{z \to z_0} f(z) = a \) and \(\lim_{z \to z_0} g(z) = b \), then

i) \(\lim_{z \to z_0} (f + g) = a + b \)

ii) \(\lim_{z \to z_0} (fg) = ab \)

iii) \(\lim_{z \to z_0} \frac{f}{g} = \frac{a}{b} \) if \(b \neq 0 \).

Proof is identical for limits of real numbers. See notes for proof of (ii).

Proof of (ii)

\[
|f(z)g(z) - ab| = |f(z)g(z) - ag(z) + ag(z) - ab| \\
\leq |g(z)||f(z) - a| + |a||g(z) - b|
\]

Now \(\forall \varepsilon > 0 \exists \delta > 0 \) such that for \(|z - z_0| < \min(1, \delta) \)

\[
|g(z) - b| < \min\left(\frac{\varepsilon}{|a||g(z_0)|}, \frac{|a||g(z_0)|}{\varepsilon}\right) \text{ and } |f(z) - a| < \frac{\varepsilon}{2(1+|b|)}
\]

\[
\Rightarrow |g(z)| < 1 + |b|
\]

So

\[
|f(z)g(z) - ab| < |g(z)||f(z) - a| + |a||g(z) - b| < (1+|b|)\left(\frac{\varepsilon}{2(1+|b|)}\right) + |a|\left(\frac{\varepsilon}{2|a|}\right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]

So \(\forall \varepsilon > 0 \exists \delta > 0 \) such that \(|z - z_0| < \delta \) when \(|z - z_0| < \delta \).

Continuity: If \(f: \mathbb{C} \to \mathbb{C} \) is defined on an open disk \(D(z_0) \), we say \(f \) is **continuous at** \(z_0 \) if

\[
\lim_{z \to z_0} f(z) = f(z_0)
\]

The limit exists and is the value of the function.
TRANSLATED INTO \(\varepsilon, \delta \) LANGUAGE:

\[f \text{ is continuous at } z_0 \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \]
\[|f(z) - f(z_0)| < \varepsilon \text{ if } |z - z_0| < \delta \]

IF \(f \) IS DEFINED ON AN OPEN SET \(S \), WE SAY \(f \) IS CONTINUOUS ON \(S \) IF \(f \) IS CONTINUOUS AT \(z_0 \) FOR ALL \(z_0 \in S \).

WHY MUST \(S \) BE OPEN? SO WE CAN FIND AN OPEN DISK AROUND EACH \(z_0 \in S \).

PROPOSITION 3: IF \(S \) IS AN OPEN SET, \(f, g : S \to \mathbb{C} \) ARE CONTINUOUS ON \(S \) THEN

a) \(f + g \) IS CTS ON \(S \)

b) \(fg \) IS CTS ON \(S \)

c) \(\frac{f}{g} \) IS CTS ON \(S \) WHEN \(g \neq 0 \).

PROOF: Follows from Prop. 2

COROLLARY 1: POLYNOMIAL AND RATIONAL FUNCTIONS ARE CTS.

PROOF: Show \(f_1(z) = z \) and \(f_2(z) = k \) for any \(k \in \mathbb{C} \) ARE CONTINUOUS, USE Prop. 3.
Proposition 4.1: If \(\lim_{z \to z_0} f(z) = a \) and \(g(z) \) is CTS at \(a \), then \(\lim_{z \to z_0} g(f(z)) = g(a) \).

2) \(A, B \) are open sets \(f: A \to C \) and \(g: B \to C \) are CTS and \(f(A) \subset B \), then \(g(f(z)) \) is CTS on \(A \).

Complex Differentiability

Let \(S \) be an open set, \(f: S \to C \) a function. We say that \(f \) is **complex differentiable** at \(z_0 \) if the limit \(\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \) exists, \(\lim_{z \to z_0} \frac{f(z + h) - f(z)}{h} \) exists. The limit is denoted by \(f'(z_0) \) or \(\frac{df}{dz}(z_0) \).

\(f \) is said to be **analytic** or **holomorphic** on \(S \) if \(f \) is complex differentiable on each \(z_0 \in S \). We say \(f \) is **entire** if it is differentiable on \(C \).

Is this strange? How do we normally define differentiability from \(\mathbb{R}^2 \to \mathbb{R}^2 \) (more on this soon).

Proposition 5: If \(f \) is differentiable at \(z_0 \) then \(f \) is CTS at \(z_0 \).

Proof: \(\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \cdot (z - z_0) = f'(z_0) \cdot 0 = 0 \) so \(\lim_{z \to z_0} f(z) = f(z_0) \).
Ex: \(f(z) = z \) is entire

Proof: \(\forall z_0 \in \mathbb{C}, \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z - z_0}{z - z_0} = 1 \)

\[f'(z) = 1 \]

Ex: For \(\mathbb{C} \) is the constant function \(f(z) = w \)

Proof: \(\forall z_0 \in \mathbb{C}, \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{w - w}{z - z_0} = 0 \)

\[f'(z) = 0 \]

Example: \(f(z) = \bar{z} \) is not complex differentiable at any point in \(\mathbb{C} \).

Proof: Let \(z_0 \in \mathbb{C} \), \(\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\bar{z_0 + h} - \bar{z_0}}{h} = \lim_{h \to 0} \frac{\bar{h}}{h} \)

This limit does not exist. Why? Well, let \(h = re^{i\theta}, \quad r > 0, \quad \Theta \in \mathbb{R} \). If \(h \to 0 \) then \(r \to 0 \).

So \(\lim_{h \to 0} \frac{\bar{h}}{h} = \lim_{r \to 0} \frac{re^{-i\theta}}{re^{-i\theta}} = e^{-2i\theta} = \cos 2\theta - i\sin(2\theta) \)

What the heck is \(\Theta \)? It could be any point on the unit circle. Limit does not exist!

More specifically, let \(h(t) = t \) for \(t \in \mathbb{R} \), so \(\lim_{t \to 0} h(t) = 0 \) so \(\lim_{h \to 0} \frac{f(z + h(t)) - f(z)}{h(t)} = \lim_{t \to 0} \frac{t}{t} = 1 \)