Theorem 1 (Cauchy-Type Integrals are Analytic)

If \(\gamma \) is a curve (not necessarily a loop) and \(g : \gamma \to \mathbb{C} \) is continuous, then

\[
G(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(w)}{w-z} \, dw
\]

is analytic on \(\mathbb{C} \setminus \gamma \) and

the \(k \)-th derivative is given by

\[
G^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{g(w)}{(w-z)^{k+1}} \, dw
\]

Heuristic Idea: See homework problem 1.

Proof: Later.

Theorem: (Cauchy's Differentiation Formula) (CDF)

If \(f : D \to \mathbb{C} \) is analytic on simply connected \(D \) then \(f \) is infinitely differentiable on \(D \) and

for each \(\gamma \in D \)

\[
f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \, dw
\]

for any closed loop \(\gamma \subset D \)

with \(n(\gamma, z) = 1 \).

Proof: Follows from part 2 and analyticity of Cauchy type integrals.

\[
\text{Ex. } \sum_{n=1}^{\infty} \frac{e^{z}}{z^n} \, dz = 2\pi i \left(\frac{z}{2\pi} \int_{1}^{z} \frac{e^{\zeta}}{(\zeta - z)^{n+1}} \, d\zeta \right) = 2\pi i \int_{1}^{z} \frac{d}{d\zeta} \left(\frac{e^{\zeta}}{\zeta} \right) \, d\zeta = 2\pi i \quad \text{for } z > 1
\]
Proof of Theorem 1 (for first derivative only)

\[G(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(w)}{w-z} \, dw, \quad z \in \mathbb{C} \setminus \gamma \]

\[
\frac{G(z+h)-G(z)}{h} = \frac{1}{h} \frac{1}{2\pi i} \int_{\gamma} \frac{g(w)}{w-(z+h)} - \frac{g(w)}{w-z} \, dw
\]

\[
= \frac{1}{h} \frac{1}{2\pi i} \int_{\gamma} \frac{h g(w)}{(w-(z+h))(w-z)} \, dw = \frac{1}{2\pi i} \int_{\gamma} \frac{g(w)}{(w-(z+h))(w-z)} \, dw
\]

Want to show this converges to \(\frac{1}{2\pi i} \int_{\gamma} \frac{g(w)}{(w-z)^2} \, dw \) as \(h \to 0 \)

Well \(|(w-(z+h))(w-z)^2| \geq \delta^3 \) so

\[
\frac{1}{h} \int_{\gamma} \frac{g(w)}{(w-(z+h))(w-z)^2} \, dw - \frac{1}{h} \int_{\gamma} \frac{f(w)}{(w-(z+h))(w-z)^2} \, dw = \frac{1}{2\pi i} \int_{\gamma} \frac{h g(w)}{(w-(z+h))(w-z)^2} \, dw
\]

Uniform convergence argument

Let \(L = \text{length}(\gamma) \) and \(M = \max_{w \in \gamma} |g(w)| \), then

\[
\left| \frac{1}{h} \int_{\gamma} \frac{h g(w)}{(w-(z+h))(w-z)^2} \, dw \right| \leq \frac{L}{2\pi} \frac{M}{\delta^3} \xrightarrow{h \to 0} 0. \text{ Giving results.}
\]

Argument for higher derivatives follows similarly from induction.
\textbf{Cor. 1:} A holomorphic function is infinitely differentiable.

\textbf{Proof:} If \(f : D \to \mathbb{C} \) is holomorphic on some open set, then for any \(z_0 \in D \), \(\exists \rho > 0 \) s.t. \(D_\rho(z_0) \subset D \) and disks are simply connected. Use CDF.

\textbf{Cor. 2:} Cauchy's Inequality for Derivative

If \(f : D \to \mathbb{C} \) is holomorphic and a circle \(\gamma \subset D \) has radius \(R \) centered at \(z_0 \) and \(\max_{\gamma} |f'(z)| \leq M \), then

\[
|f^{(k)}(z_0)| \leq \frac{k! M}{R^k}.
\]

\textbf{Proof:} \(|f^{(k)}(z_0)| = \left| \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} dw \right| \leq \frac{k!}{2\pi} \cdot \frac{M}{R^{k+1}} \cdot 2\pi R = \frac{k! M}{R^k}. \)

\textbf{Cor. 3:} Liouville's Theorem

The only bounded entire functions are constant.

\textbf{Proof:} If \(f : \mathbb{C} \to \mathbb{C} \) is holomorphic and bounded \(\exists M > 0 \) s.t. \(|f(z)| \leq M \) for all \(z \in \mathbb{C} \). So by \textbf{Cor. 2:} \(|f'(z)| \leq \frac{M}{R} \) for all \(R > 0 \), \(\forall z \in \mathbb{C} \).

Since we can take \(R \) arbitrarily large.
So \(f(z) = 0 \) for all \(z \in \mathbb{C} \), so \(f(z) \) is constant.

Cor. 4. The Fund. THM. of Algebra (FTA):

Every polynomial on \(\mathbb{C} \) factors completely into linear components.

Proof: If \(p(z) = a_nz^n + \cdots + a_1z + a_0 \) a poly. of degree \(n \geq 1 \)
then if \(p(\alpha) = 0 \), \(p(z) - p(\alpha) = q(z)(z - \alpha) \)
where \(q(z) \) is a poly. of deg. \(n - 1 \).

Why? Polynomial long division.

So it is enough to show \(p(\alpha) = 0 \) for some \(\alpha \in \mathbb{C} \), then \(p(z) = q(z)(z - \alpha) \) and we have reduced the problem to degree \(n - 1 \) and we can proceed by induction until \(q(z) \) is degree 1 (linear).

So FTA \(\implies p(\alpha) = 0 \) for \(\alpha \in \mathbb{C} \).

Proof by Contradiction:
Suppose \(p(\alpha) = 0 \) for all \(\alpha \in \mathbb{C} \). Then \(f(z) = \frac{1}{p(z)} \) is entire.

Since \(|p(z)| = |a_n||z^n| - |a_{n-1}| |z|^{n-1} - \cdots - |a_1||z| + |a_0| \)
we have \(|p(z)| \geq \frac{|a_n||z|^n}{2} \) for sufficiently large \(|z| \geq R > 0 \)
so \(|f(z)| = \frac{1}{|p(z)|} \geq \frac{2}{|a_n||z|^n} \leq \frac{2}{|a_n|^n} \) for \(|z| \geq R \).

And \(M = \max_{|z| \leq R} |f(z)| \) exists since \(f(z) \) is CTS everywhere and \(|z| \leq R \) is compact.

So \(|f(z)| \leq \max(M, \frac{2}{|a_n|^n}) \), so \(f(z) \) is bounded thus constant.