THE INDEX OF NEGATIVE ONE

THOMAS A. HULSE

Suppose \(g \) is a primitive root \((\mod n)\). As the primitive root theorem states, this occurs exactly when \(n = 2, 4, p^i \) or \(2p^i \) where \(p \) is an odd prime. Thus a complete set of reduced residues is

\[1, g, g^2, \ldots, g^{\phi(n)-1}. \]

One of these must be \(-1\). Suppose \(g^k \equiv -1 \pmod n \) for \(0 \leq k \leq \phi(n) - 1 \), then \(g^{2k} \equiv (g^k)^2 \equiv (-1)^2 \equiv 1 \pmod n \). Since \(\phi(n) \) is the order of \(g \pmod n \) we have that \(\phi(n)|2k \). But \(2k < 2\phi(n) \) and it’s obvious \(k \neq 0 \) unless \(n = 2 \), so \(2k = \phi(n) \) and so \(k = \phi(n)/2 \). Thus we have that for any \(n > 2 \) where primitive roots exist

\[\text{ind}(-1) = \phi(n)/2 \pmod n \]

regardless of our choice of primitive root.

To better understand why the proof I gave in lecture was incomplete, attempt Problem 1b) in Assignment 3.

\[\text{Date: October 9, 2014.} \]