Recall: $A = UV^*$ where U is orthogonal, V is orthogonal, and S is diagonal (eigenvalues of A^*A).

We use U, V as orthonormal bases to write A in diagonal form.

Proposition: $A = \mathbb{E}_{\text{svd}}$ where $\mathbb{E}_{\text{svd}}(A) = UDV^*$.

Start with $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Here pool U is $\mathbb{E}_{\text{svd}}(A) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

To get U, we take $U = \mathbb{E}_{\text{svd}}(A) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Special Value Decomposition: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

The special value decomposition of $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

The special value decomposition (SVD) of $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Non-zero singular values:
\[\text{If } j \leq r, \quad \tilde{A}v_j = \sigma_j v_j \quad \text{and} \quad \text{if } j > r, \quad \tilde{A}v_j = 0 \quad \text{and} \quad \sum_{k=1}^{r} \sigma_k v_k^* v_j = 0 \]

\[\text{Lemma: If } A \text{ can be represented as } A = \tilde{U} \Sigma \tilde{V}^* \quad \text{where } \delta_k > 0 \]

\[\tilde{U}, \tilde{V}, \Sigma \text{ are orthonormal} \]

Then this is also an SVD.

Proof: Check that \(\tilde{v}_1, \tilde{v}_2 \) are the eigenvalues of \(A^* A \) \(\text{with nonzero eigenvalue}, \sigma_k^2 > 0 \).

Also \(\text{max} \frac{1}{\sigma_k^2} \text{ or entries of } \tilde{A}^* \tilde{A} \).

Corollary: If \(A = \sum_{k=1}^{r} \sigma_k v_k^* u_k \) is an SVD, then \(A^* = \sum_{k=1}^{r} \sigma_k u_k^* v_k \) is also an SVD.

\(A, A^* \) have the same nonzero singular values.

Proof: From Lemma.

Aside: \(|A^*| = |A| \iff |A^*| \neq |A| \)

If \(A = \sum_{k=1}^{r} \sigma_k v_k^* u_k \) then can be written as the product of matrices

\[A = \tilde{W} \Sigma \tilde{V}^* \]

where \(\tilde{W} = [\tilde{w}_1, \ldots, \tilde{w}_r] \quad m \times r \)

\[\Sigma = \text{diag} \sigma_1, \sigma_2, \ldots, \sigma_r \quad r \times r \]

\[\tilde{V} = [\tilde{v}_1, \ldots, \tilde{v}_r] \quad n \times r \]
So complete $\tilde{v}_1, \ldots, \tilde{v}_r$ to a basis $\tilde{v}_1, \ldots, \tilde{v}_m$, and complete $\tilde{w}_1, \ldots, \tilde{w}_r$ to a basis $\tilde{w}_1, \ldots, \tilde{w}_n$.

and let Σ be constructed by padding the bottom-right of Σ with zeroes to make an $m \times n$ matrix.

Henceforth, such a matrix is diagonalisable.

Then: $A = W \Sigma V^*$

where $W = [\tilde{w}_1, \ldots, \tilde{w}_m]$ unitary matrix

$\Sigma = \text{diag } \epsilon_1, \ldots, \epsilon_m$ diagonalisation matrix

$V = [\tilde{v}_1, \ldots, \tilde{v}_n]$ unitary matrix

§6.4 Why the @! #? & we care about SVD:

- Let A be a diagonal matrix with diagonal entries $s_1, \ldots, s_n > 0$.

Let's look at the image of the unit ball $B = \{ x \in \mathbb{R}^n : \| x \| = 1 \}$.

Let $d_B = \{ x \in \mathbb{R}^n : \| x \| = 1 \}$ boundary of B.

If $x \in d_B$ let $x = (x_1) \ldots (x_n)$ then $\sum_{k=1}^{n} x_k^2 \leq 1$ i.e. $x_1^2 + x_2^2 + \ldots + x_n^2 \leq 1$.

Let $y = (y_1) \ldots (y_n) = A x = (s_1 x_1) \ldots (s_n x_n)$.

Since $y_k = x_k \Rightarrow (y_1)^2 + (y_2)^2 + \ldots + (y_n)^2 \leq 1$

this is an ellipse - type thing: an n-dimensional ellipsoid with semi-axes of length s_k and principle axes $\tilde{e}_1, \ldots, \tilde{e}_n$.

This to notice: works for SVD, since W, V^* are unitary.

Σ is diagonalisable.
Saying that \(A = W \Sigma V^* \) for \(w, v \) unitary and diagonal is diagonal.

Says that \(w \) with respect to the bases

\[
A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}, \quad B = \begin{bmatrix} \vec{w}_1 & \cdots & \vec{w}_n \end{bmatrix}
\]

\[[A]_{B,A} \text{ is diagonal} \]

Let \(A \) be any \(mxn \) matrix, \(B \) the unit ball in \(\mathbb{R}^n \).

Then \(A(B) \) is an ellipsoid in \(\text{ran} A \) with axes \(\alpha_1, \alpha_2, \ldots, \alpha_r \) and principal axes \(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_r \) if \(r \) is the number of nonzero singular values.

Let \(S \) be the largest singular value.

Then \(\| Ax \| \leq S \| x \| \) for all \(x \in \mathbb{R}^n \).

\[
\max_{\| x \| = 1} \| Ax \| = S
\]

Call \(\| A \| = S \), the operator norm of \(A \).

There's another norm: \(\| A \|_2 = \sqrt{\text{trace} (A^* A)} = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \| A \| \)

Also called Frobenius norm.

Let \(A \) be invertible and so the smallest singular value.

Then the condition number is \(\| A \| \| A^{-1} \| = \frac{S}{S_n} \)

If \(Ax = b \)

\[
A \Delta x = \Delta b
\]

Then \(\| \Delta x \| \leq \| A \| \| \Delta x \| \| \Delta b \| \)

\[
\| \Delta x \| \leq \| A \| \| \Delta b \|
\]

So this tells us about metric properties.