Unitary operators: invertible isometries \(U^* U = I \).

Use generalized eigenvalue identity: if \(U: X \to Y \) takes an orthonormal basis \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) to \(U\vec{v}_1, U\vec{v}_2, \ldots, U\vec{v}_n \), an orthonormal basis.

Proposition: Let \(U \) be a unitary matrix.

1. \[|\det U| = 1 \]
2. If \(\lambda \) is an eigenvalue of \(U \) then \(|\lambda| = 1 \).

Proof:

1. \[1 = \det (U^* U) = \det(U^*) \det(U) = \det(U^t) \det(U) = \det(U)^2 \]

2. If \(U\vec{v} = \lambda \vec{v} \)

\[||U\vec{v}|| = ||\lambda \vec{v}|| = |\lambda| ||\vec{v}|| \]

\[||\vec{v}|| = \sqrt{a^2 + b^2} \]

So \(|\lambda| = 1 \). Since \(U^* \) is the inverse of \(U \), and \(\det(U^*) = \det(U) \), we have \(|\det(U)| = 1 \).

Operators \(A \) and \(B \) are called unitarily equivalent if \(A = UBV^* \) for some unitary \(U \). (Note \(U^* = U^t \))

So unitarily equivalent operators are similar.

Proposition: A matrix \(A \) is unitarily equivalent to a diagonal matrix \(D \) if \(A \) has an orthonormal (orthonormal) basis of eigenvectors.

Proof: First note that if \(A = UBV^* \) and \(B\vec{x} = \lambda \vec{x} \) for \(\lambda \neq 0 \), then \(AU\vec{x} = (UBV^*)U\vec{x} = UBV^*U\vec{x} = UBV^*\lambda \vec{x} = U\lambda \vec{x} \).

So \(U\lambda \vec{x} \) is an eigenvector of \(A \).

If \(A = UDU^* \) where \(D \) is diagonal, \(U \) unitary, since \(\vec{e}_1, \ldots, \vec{e}_n \) are a standard orthonormal basis of eigenvectors for \(D \),

\[D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \]

\[U\vec{e}_k = e_k \]

So \(U\vec{e}_1, U\vec{e}_2, \ldots, U\vec{e}_n \) is an orthonormal basis of eigenvectors for \(A \).
Theorem: Let $A : X \rightarrow X$ be an operator acting on a complex inner product space. Then there exists an orthonormal basis $\tilde{v}_1, \ldots, \tilde{v}_n$ such that A is upper triangular with respect to this basis. That is, $A = U^*TV^*$ where U is unitary, upper triangular.

Proof: by induction on the dimension of X.

So if $\dim X = 1$, then A is 1×1, thus upper triangular.

Suppose it's true for $\dim X = n-1$. Let \tilde{v}_1 be an eigenvector of A with eigenvalue λ_1, such that $\|\tilde{v}_1\| = 1$.

Let $E = (\text{span} \{ \tilde{v}_1 \})^\perp$, that is all vectors orthogonal to \tilde{v}_1.

Since $X = E + E^\perp$, $\dim E = n-1$ and E has an orthonormal basis $\tilde{v}_2, \tilde{v}_3, \ldots, \tilde{v}_n$.

In this basis, $A_{ij} = \frac{\lambda_1}{\tilde{v}_i, \tilde{v}_j}$ (if A_{ij} is upper triangular).

Then so is A. Thus, $A_{ij} = \frac{\lambda_1}{\tilde{v}_i, \tilde{v}_j}$. Therefore, $A = U^*TV^*$.

Thus, A is upper triangular.
notice $A: E \to E$.
by identifying E with vectors whose first coordinate is 0.

$\begin{bmatrix}
0 \\
\ddots \\
0
\end{bmatrix}$

Since $\dim E = n - 1$
exists an orthonormal basis $\mathbf{u}_2, \mathbf{u}_3, \ldots, \mathbf{u}_n$ such that A_1 is upper triangular.

so A is upper triangular with respect to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.

-note: \mathbf{u} and T may have complex entries even if $A = UTU^*$ is real.
-note: I didn't need to make the basis vectors orthonormal (it was just cool.)

Theorem (keepin' it real)

Let $A: x \to x$ be an operator on a real inner product space.
Suppose all eigenvalues of A are real,
then exists orthonormal basis $\mathbf{u}_1, \ldots, \mathbf{u}_n$ such that A is upper triangular and real

$A = UTU^*$

Proof: same as last theorem except when I get to

$\begin{bmatrix}
\lambda I \\
0
\end{bmatrix}$
to use the inductive step show A_1 has real eigenvalues.

$\det (A - \lambda I) = (\lambda - \lambda_1) \det (A_1 - \lambda I)$
so eigenvalues of A_1 are eigenvalues of A, thus real,
so we can use inductive step.