Chapter 4 - "Introduction to Spectral Theory" (Eigenvalues and Eigenvectors)

"The main idea of spectral theory is to split an operator (matrix) into [manageable chunks]."

Consider the difference equation $A: V \rightarrow V$ \(x_{n+1} = A x_n \); (i.e. \(x_1 = A x_0, x_2 = A x_1, \ldots \))
Note that \(x_n = A^n x_0 \); we want to observe the behavior of this as \(n \) gets large without needing to compute \(A^n \) for large \(n \).
What if we were to find a vector \(\mathbf{v} \) such that \(A \mathbf{v} = \lambda \mathbf{v} \) for some scalar \(\lambda \)? Therefore, \(A \mathbf{v} = \lambda \mathbf{v} \).

A scalar \(\lambda \) is called an eigenvalue of an operator \(A: V \rightarrow V \) if \(\exists \) a nonzero vector \(\mathbf{v} \in V \) s.t. \(A \mathbf{v} = \lambda \mathbf{v} \); \(\mathbf{v} \) is called an eigenvector of \(A \), corresponding to \(\lambda \).
Once we find \(\lambda \), we solve \(A \mathbf{x} = \lambda \mathbf{x} \) to find the eigenvectors.

If \(A \mathbf{x} = \lambda \mathbf{x} \) for nonzero \(\mathbf{x} \in V \), \(A \mathbf{x} = (A \mathbf{I}) \mathbf{x} \) and \((A - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0} \) for nonzero \(\mathbf{x} \in V \).
This implies \(\det (A - \lambda \mathbf{I}) = 0 \), which is a polynomial in \(\lambda \); \((A - \lambda \mathbf{I})\) has a nontrivial kernel, so it's not invertible.

Let \(\ker (A - \lambda \mathbf{I}) \) be called the eigenspace of \(\lambda \). The set of eigenvalues for \(A \) is called the spectrum of \(A \), and is denoted \(\sigma (A) \).

To find eigenvalues, we want to find zeroes of \(P(\lambda) = \det (A - \lambda \mathbf{I}) \).
In short, \(\lambda \in \sigma (A) \iff \det (A - \lambda \mathbf{I}) = 0 \).

If \(A \) is an \(n \times n \) matrix, it can be shown that \(P(\lambda) \) is a polynomial of degree \(n \), called the characteristic polynomial of \(A \).

Now, suppose we have a more abstract linear transformation \(T: V \rightarrow V \) in an abstract vector space. How do we compute the spectrum? Pick a basis, get a matrix \([T]_{BB} \), and then find \(\lambda \) using \(\det ([T]_{BB} - \lambda \mathbf{I}) \).

\[\text{Remember the change of basis: } [T]_{BB} = [T]_{BA} [T]_{AA} [T]_{AB} = [T]_{BA} [T]_{AA} [I]_{BA}^{-1}, \text{ this takes us from basis } A \text{ to basis } B. \]\nNote that \([T]_{BB} \text{ and } [T]_{AA} \text{ are similar, as there exists an invertible matrix } S \text{ such that } [T]_{BB} = S [T]_{AA} S^{-1}. \]

Suppose \(A \) and \(B \) are similar. Then \(A = S B S^{-1} \) for some invertible \(S \).
\(A - \lambda \mathbf{I} = S B S^{-1} - \lambda \mathbf{I} = S (B - \lambda \mathbf{I}) S^{-1}, \) so \(A - \lambda \mathbf{I} \) is similar to \(B - \lambda \mathbf{I}, \) so \(\det (A - \lambda \mathbf{I}) = \det (B - \lambda \mathbf{I}) \) and \(A \) and \(B \) have the same characteristic polynomial and spectrum.
This implies that the spectrum is independent of basis choice.

Let \(P(x) = \det(A-xI) \). If \(\lambda \in \sigma(A) \), then \(P(\lambda) = 0 \), as \(\lambda \) is an eigenvalue of \(A \).

\[P(x) = (x-\lambda)^k q(x) \]

where \(q(x) \) is a polynomial that doesn't have \(\lambda \) as a root.

\(k \) is the algebraic multiplicity (often called "multiplicity") of \(\lambda \).

Note that \(P(x) = \sum_{k=0}^{\infty} a_k x^k \) as an \(n \)-degree polynomial has exactly \(n \) roots in \(\mathbb{C} \), "counting multiplicities".

That is, \(P(x) = a_n(x-\lambda_1)(x-\lambda_2)...(x-\lambda_n) \); there are \(n \) of \((x-\lambda_i) \), some might be repeated.

Also, \(\dim \text{Ker}(A-\lambda I) \) is called the geometric multiplicity.

Proposition: geometric multiplicity of \(\lambda \) \(\leq \) algebraic multiplicity of \(\lambda \)

Proof: Homework problem 1.9

Proposition: If \(A \) is an \(n \times n \) matrix, and \(\lambda_1, \ldots, \lambda_n \) are its eigenvalues (counting multiplicities), then:

1) \(\text{Trace } A = \lambda_1 + \lambda_2 + \cdots + \lambda_n \)
2) \(\det A = \lambda_1 \lambda_2 \cdots \lambda_n \)

Proof: Homework problems 1.10 and 1.11

Eigenvalues of a triangular matrix - If \(A \) is triangular with diagonal entries \(a_1, \ldots, a_n \), then \((A-\lambda I) \) is triangular with diagonal entries \((a_1-\lambda), (a_2-\lambda), \ldots, (a_n-\lambda) \), and \(\det (A-\lambda I) = (a_1-\lambda)(a_2-\lambda)\cdots(a_n-\lambda) \), so the eigenvalues are the diagonal entries.