Section 2.3: Analyzing Pivots (continued)

Given a matrix A, let A_e be an echelon form of A. Let $A = [\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m]$ for each $\tilde{v}_k \in \mathbb{R}^m$.

We showed
1. $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m$ are **linearly independent**
 iff there is a pivot in every column of A_e,
2. $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m$ are **spanning**
 iff there is a point in every row of A_e,
3. $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m$ is a **basis**
 iff \exists a pivot in every row and column of A_e.

PROP: Any linearly independent system of vectors in \mathbb{R}^n has no more than n vectors in it.

PROOF: Let $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m$ be a linearly independent in \mathbb{R}^m. Let $A = \begin{bmatrix} | & | & | \\ \tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m \end{bmatrix}$. There is a pivot point in every column, but there are only n rows. There is a pivot in m rows, so $m \leq n$. ■

PROP: Any two bases in V have the same number of vectors; we will call this number the **dimension** of V, or **dim V**.

PROOF: Let $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_n$ and $\tilde{w}_1, \tilde{w}_2, ..., \tilde{w}_m$ be bases for V. WLOG, let $n \leq m$. Let $A: \mathbb{R}^n \to V$ where $A\tilde{v}_k = \tilde{v}_k$ for all k. A is an isomorphism (sends basis to basis). So $A^{-1}\tilde{w}_1, A^{-1}\tilde{w}_2, ..., A^{-1}\tilde{w}_m$ is a basis for \mathbb{R}^n because A^{-1} is an isomorphism. So $m \leq n$. So $m = n$. ■

PROP: Any basis in \mathbb{R}^n has n vectors in it.

PROOF: Use previous proposition.

PROP: Any spanning set in \mathbb{R}^n must have at least n vectors in it.

PROOF: Let $\tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m$ be a spanning set in \mathbb{R}^n and let $A = \begin{bmatrix} | & | & | \\ \tilde{v}_1, \tilde{v}_2, ..., \tilde{v}_m \end{bmatrix}$ be an $n \times m$ matrix. So A_e has a pivot in every row (n rows) so it has...
a pivot in \(n \) columns. So \(n \leq m = \text{total number of columns} \).

PROP: A matrix \(A \) is invertible iff \(A \) has a pivot in every column and every row.

PROOF: On Friday, this claim about pivots is equivalent to \(\forall \, \vec{b} \in \mathbb{W} \exists \, \vec{x} \in \mathbb{V} \) such that \(A\vec{x} = \vec{b} \). This means \(A \) is invertible.

CORR: An invertible matrix must be square (that is, it must be \(n \times n \)).

PROP: If \(A \) is square and left-invertible or right-invertible, then it is invertible.

PROOF: As an exercise.

Section 2.4 : Finding the Inverse of \(A \)

Suppose \(A \) is an invertible \(n \times n \) matrix. Then we write the \(n \times 2n \) augmented matrix \((A \mid I_n) \). Then use row reduction to turn \(A \) into \(I_n \). You will get \((I_n \mid A^{-1}) \).

Why does this work?

First reason. Since \(I_n = \begin{bmatrix} | & | & | \\ \vec{e}_1, \vec{e}_2, ..., \vec{e}_n \end{bmatrix} \) by row reducing \((A \mid I_n) \) we are solving \(A\vec{x} = \vec{e}_k \) \(\forall k \) simultaneously. So \(\vec{x} = A^{-1}\vec{e}_k \), so the output is \((I_n \mid [A^{-1}\vec{e}_1, A^{-1}\vec{e}_2, ..., A^{-1}\vec{e}_n]) = (I_n \mid A^{-1}) \).

Second reason. Let \(E_1, E_2, ..., E_N \) be the elementary matrices (i.e. row operations) that turn \(A \) into \(I_n \). Let \(E = E_N \ldots E_2 E_1 \), so \(EA = I_n \), so \(A = E^{-1} = E_1^{-1}E_2^{-1} \ldots E_N^{-1} \) so \(A^{-1} = E \).

PROP: Every invertible matrix is the product of elementary (row operation) matrices.

PROOF: See above.
(Also see book for example.)

Section 2.5: Dimensions
The number of basis vectors in V is the dimension of V, called $\text{dim } V$. For example, $\text{dim}\{0\} = 0$. If V does not have a finite basis, then $\text{dim } V = \infty$, V is infinite-dimensional (otherwise, it is finite dimensional.)

\textbf{PROP:} A vector space is finite dimensional \textbf{iff} it has a finite spanning system.

\textbf{PROOF:} Basis is spanning and you can find a basis inside a spanning system.

\textbf{PROP:} If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$ is linearly independent in V and $\text{dim } V = n$, we can find $\vec{v}_{r+1}, \vec{v}_{r+2}, \ldots, \vec{v}_n$ such that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{r+1}, \vec{v}_{r+2}, \ldots, \vec{v}_n$ is a basis.