THE LEGENDRE SYMBOL
\[\left(\frac{a}{p} \right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue} \\ -1 & \text{otherwise} \end{cases} \]

so \(\left(\frac{4}{5} \right) = 1 \), \(\left(\frac{3}{5} \right) = -1 \).

Clearly if \(a \equiv a' \pmod{p} \) then by definition \(\left(\frac{a}{p} \right) = \left(\frac{a'}{p} \right) \).

§ 4.2 EULER'S CRITERION:

Euler's Criterion: If \(p \) is an odd prime then
\[\left(\frac{a}{p} \right) \equiv a^{\frac{p-1}{2}} \pmod{p} \] for \(a \) with \((a, p) = 1 \).

Proof: Let \(\Gamma = \frac{1}{2}(p-1) \). For \((p, k) = 1 \), by Lagrange's Theorem, \(x^k \equiv k \pmod{p} \) has, at most, \(2 \) solutions. If a solution exists then \(2 \) solutions exist since \((p-x) \equiv x \pmod{p} \) is also a solution.

Every \(x = 1, 2, 3, \ldots, (p-1) \) is a solution to \(x^2 \equiv k \) for some \(k \), so there must be \(\frac{p-1}{2} \) distinct nonzero quadratic residues.

If \(a \equiv x^2 \pmod{p} \) for some \(x \in \mathbb{Z} \) then
\[a^\Gamma \equiv (x^2)^\Gamma \equiv x^{2\Gamma} \equiv x^{p-1} \equiv 1 \pmod{p} \] by Fermat's Little Theorem.
FURTHERMORE, \((a^c)^2 \equiv a^{p-1} \equiv 1 \pmod{p}\)

so \(a^c \equiv \pm 1 \pmod{p}\). Since \(a^c \equiv 1 \pmod{p}\)

has, at most, \(r\) solutions by Lagrange’s Theorem

and all \(r\) quadratic residues are solutions.

We must have \(a^c \equiv -1 \pmod{p}\) when

\(a\) is not a quadratic residue

so \(\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}\). \(\blacksquare\)

Another argument can be made

with primitive roots (Assignment 3).

Euler’s criterion gives us that

\(\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}\)

and so

the Legendre symbol has a multiplicative property,

\(\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)\).

Also, \(\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} \pmod{p} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}\)

which we showed last week, when \(p \equiv 1 \pmod{4}\)

\((r!)^2 \equiv -1 \pmod{p}\).

\[\$4.3\] Gauss’ Lemma

For \(a \in \mathbb{C}\) and \(n \in \mathbb{N}\), we define the "numerically least residue" of \(a \pmod{n}\) is
\(\bar{a} \in \mathbb{Z} \) SUCH THAT \(a \equiv \bar{a} \pmod{n} \) AND
\[-\frac{1}{2}n < \bar{a} \leq \frac{1}{2}n. \]
WE CAN DO THIS BECAUSE THERE
ARE \(n \) DISTINCT RESIDUES IN \((-\frac{n}{2}, \frac{n}{2}] \), SO \(a \)
IS EQUIVALENT TO ONE OF THEM.

For odd \(p \),
LET \((a, p) = 1 \) AND LET \(a_j := \bar{a}_j \) FOR \(j \in \mathbb{N} \).
WHERE \(\bar{a}_j \) IS DEFINED \(\pmod{p} \).

Gauss' Lemma \(\left(\frac{a}{p} \right) = (-1)^L \) WHERE
\(L := \# \{ a_j | a_j < 0 \text{ for } j \leq \frac{p-1}{2} \}. \) (Odd \(p \)).

Example Consider \(\left(\frac{4}{5} \right) \). \(a = 4 \) so \(a_1 = \frac{4}{1} = 4 \).
\(a_2 = 4/2 = -2 \), \(\left(\frac{p-1}{2} \right) = 2 \) so \(L = 2 \) AND \(\left(\frac{4}{5} \right) = (-1)^2 = 1 \).

Proof: Again let \(\gamma = \left(\frac{a}{p} \right) \). First note
\(|a_1, |a_2|, \ldots, |a_{\gamma}| \) IS A REORDERING OF
OF \(1, 2, \ldots, \gamma \) SINCE \(|s|/|a_r| = \gamma \) AND
THEY ARE ALL DISTINCT SINCE \(a_j \neq a_k \pmod{p} \).

IF \(j \neq k \), So \(a_j \neq a_k \) IF \(j \neq k \).
IF \(a_j = a_k \) THEN \(a_j = a_k \pmod{p} \) SO
\(j = k \pmod{p} \) SO \(j + k \geq p \), WHICH IS IMPOSSIBLE
FOR \(1 \leq j, k \leq \frac{p-1}{2} \). So \(a_j \neq a_k \) FOR \(j \neq k \).

\(|a_j| \neq |a_k| \) FOR \(j \neq k \).

So \(a_1, a_2, \ldots, a_\gamma = (-1)^L \gamma! \) BUT \(a_1 \ldots a_\gamma \equiv (a_1)(a_2) \ldots (a_\gamma) \pmod{p} \)