CHAPTER 3: CONGRUENCES

§3.1 DEFINITIONS

IF a, b \in \mathbb{Z} we say \(a \equiv b \pmod{n} \) IF \(n \mid (a-b) \).

"a is congruent to b modulo n."

Clearly an equivalence relation: \(a \equiv a \pmod{n} \),

\(a \equiv b \pmod{n} \iff b \equiv a \pmod{n}, \) AND \(a \equiv b \pmod{n} \) and \(b \equiv c \pmod{n} \)

\(\implies a \equiv c \pmod{n} \).

By a "complete set of residues mod n" we mean a
Set of representatives of each equivalence class
mod n, so for example \(0, 1, 2, \ldots, n-1 \).

If \(a \equiv a' \pmod{n} \) and \(b \equiv b' \pmod{n} \) then it is easy
To verify \(a \pm b \equiv a' \pm b' \pmod{n} \) and \(ab \equiv a'b' \pmod{n} \).

So if \(f(x) \) is a polynomial with integer coefficients
\(f(a) \equiv f(a') \pmod{n} \).

If \(kc \equiv kc' \pmod{n} \) for some \(k \in \mathbb{N} \) with
\((k,n) = 1 \) then \(c \equiv c' \pmod{n} \). Why? Two reasons
1) \(n \mid k(c-c') \) but \((n,k) = 1 \) so \(n \nmid (c-c') \)
2) \(kx+ny=1 \) for some \(x, y \in \mathbb{Z} \) \(\iff \) \(kx \equiv 1 \pmod{n} \) for
Some \(x \in \mathbb{Z} \),

And so we can say \(k \) is "invertible"
Mod n IFF \((k,n)=1 \), and we can call \(x \equiv k^{-1} \pmod{n} \).

So \(kc \equiv kc' \pmod{n} \) \(\iff \) \(k'kc \equiv k'kc' \pmod{n} \) \(\iff \) \(c \equiv c' \pmod{n} \).

Also \(k' \) is unique \(\pmod{n} \) since IF \(ak \equiv 1 \pmod{n} \) and \(bk \equiv 1 \pmod{n} \),

THEN \(akb \equiv a \equiv b \pmod{n} \).
IF \(a_1, a_2, \ldots, a_n \) is a complete set of residues modulo \(n \) and \((k, n) = 1 \), then so is \(ka_1, ka_2, \ldots, ka_n \) (why?)

Also if \(k \in \mathbb{Z} \) with \(ka \equiv ka' \pmod{n} \), more generally
\[
a \equiv a' \pmod{(n, k)}, \quad \text{since} \quad n \mid k(a - a') \Rightarrow \frac{n}{(k, n)} \mid \frac{k}{(k, n)}(a - a')
\]
and \(\left(\frac{n}{(k, n)} \right) k = 1 \).

§ 3.2 CHINESE REMAINDER THEOREM

Sun Tzu's Remainder Theorem? (5th century).

Anyway...

Claim: Let \(a, n \in \mathbb{N} \) and \(b \in \mathbb{Z} \), then
\[
ax \equiv b \pmod{n}
\]
has a solution for \(x \in \mathbb{Z} \) \iff \((a, n) \mid b \).

Proof: The condition is necessary since \((a, n) \mid (ax - b) \) and \((a, n) \mid a \) so \((a, n) \mid b \).

For sufficiency, let \(d = (a, n) \) and let \(d \mid b \).

Denote \(a = a'd \), \(n = n'd \) and \(b = b'd \). If \(a'x \equiv b' \pmod{n'} \)
for some \(x \in \mathbb{Z} \) we are done since \(n' \mid a'x - b' \)
\[
\Rightarrow n' \mid (ax - b). \quad \text{So solve} \quad a'x \equiv b' \pmod{n'} \Rightarrow (a')^{-1}a'x \equiv (a')^{-1}b' \pmod{n'}
\]
so \(k \equiv (a')^{-1}b \pmod{n'} \) works and is a unique solution \(\pmod{n'} \). \(\square \)
Remark: If x_0 is the unique solution $(\mod n)$, then $x = x_0 + mn'$ is a solution $(\mod n)$ and we see there are $\frac{n}{n'}$ of these distinct solutions when a solution exists.

Every nonzero element $(\mod p)$ is invertible so the residues $0, 1, \ldots, p-1$ under modular arithmetic make a field, which we denote \mathbb{Z}_p^*. Similarly, the residues $0, 1, \ldots, n-1$ under arithmetic $(\mod n)$ make a ring: \mathbb{Z}_n.

Chinese Remainder Theorem

Let $n_1, n_2, \ldots, n_k \in \mathbb{N}$ with $(n_i, n_j) = 1$ for $i \neq j$ then for any $c_1, \ldots, c_k \in \mathbb{Z}$ there exists exactly one $x \in \mathbb{Z}$ which is a simultaneous solution to $x \equiv c_i \pmod{n_i}$ for all $i = 1, \ldots, k$ and the solution is unique mod $n_1n_2\ldots n_k$.

Proof: Let $N = n_1n_2\ldots n_k$ and $m_i = \frac{N}{n_i}$ for $i = 1, \ldots, k$. Then $(n_i, m_i) = 1$ for all i. So $m_ix_j \equiv c_j \pmod{n_j}$ has a unique solution for $x_j \pmod{n_j}$. Then $m_1x_1 + m_2x_2 + \ldots + m_kx_k \equiv c \pmod{N}$. This is our x.

Solution is unique since if y is another solution then $n_i | (x - y)$ for all n_i and n_i are coprime.