A polygonal path is just a path of line segments.

A domain is a (non-empty) open, connected subset of \(\mathbb{C} \), often denoted \(D \).

Fun fact, any polygonal path in \(D \) can be made into a path of vertical and horizontal segments in \(D \).

So thinking about \(\mathbb{C} \) as \(\mathbb{R}^2 \), coordinate pairs \((x, y)\), we can think of
\[
U : \mathbb{C} \to \mathbb{R}
\]
as a real valued function
\[
U : \mathbb{R}^2 \to \mathbb{R}, \quad u(x + iy) = u(x, y).
\]
In multivariable Calc you've seen functions like these.

Theorem 1: Suppose \(U : D \to \mathbb{R} \), a real-valued function \(U(x, y) \) on the domain \(D \).
(24) If $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ for all $(x, y) \in D$ then u is constant in D.

Why? What does $\frac{df}{dx} = 0$ mean for single variable functions? Constant. Along vertical and horizontal paths u is like a single-variable function, and so is constant along those paths. All points in D are connected by these paths, so u is constant.

Example: Suppose $\frac{\partial u}{\partial x} = y$ and $\frac{\partial u}{\partial y} = x$ for all points on D. Show $u = xy + c$.

Let $v(x, y) = xy$ then $\frac{\partial (u-v)}{\partial x} = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} = y - y = 0$ and $\frac{\partial (u-v)}{\partial y} = \frac{\partial u}{\partial y} - \frac{\partial v}{\partial y} = x - x = 0$. So $u-v$ is constant, so $u = v + c$ so $u(x, y) = xy + c$.

A set S is **bounded** if S is contained in $D(z, R)$, for some $z \in \mathbb{C}$, $R > 0$.

Bounded.

Unbounded if not.
§ 2.1 Functions of a Complex Variable

A function (or mapping) \(f : A \rightarrow B \) is a rule that assigns for every element \(a \in A \) a value \(f(a) = b \in B \). A thing that takes input and spits out outputs.

We say \(A \) is the domain of definition of \(f \) (that is, the set where \(f \) makes sense) and the set of \(f(a) \)'s is called the range of \(f \).

Note: The "domain of definition" does not have to be a "domain" as defined in §1.6, which is an open connected set.

We are accustomed to functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) like \(f(x) = x^2 + 2 \), or functions \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) like \(f(x, y) = x^2 - y^2 \) or \(f(t) = [t, t^2, t^3] \).
We want to talk about functions where \(f: \mathbb{C} \rightarrow \mathbb{C} \) or \(f: A \rightarrow B \) where \(A, B \subseteq \mathbb{C} \).

Not so strange at first. Let \(f(z) = \frac{z^5}{z^3 - 1} \)
we see it takes complex numbers
to other complex numbers: \(f(0) = \frac{0}{0 - 1} = 0 \)
\(f(i) = \frac{i^3}{i^3 - 1} = \frac{-i}{-1 - 1} = \frac{i}{1 + 1} = \frac{i(1 - i)}{2} = \frac{1 - i}{2} \). etc.

What is the domain of definition for \(f(z) \)?
All of \(\mathbb{C} \) except where \(z^3 - 1 = 0 \), since we
don't divide by zero. These are the cube roots
of unity: \(\pm 1, e^{\frac{2\pi i}{3}}, e^{\frac{4\pi i}{3}} \).

For more general \(f: \mathbb{C} \rightarrow \mathbb{C} \) let
\(u(z) = \text{Re}(f(z)) \)
and \(v(z) = \text{Im}(f(z)) \). So
\(u, v: \mathbb{C} \rightarrow \mathbb{R} \), and
\(f(z) = u(z) + iv(z) \)
\(f: \mathbb{C} \rightarrow \mathbb{C} \)
\(f(x + iy) = u(x + iy) + iv(x, y) \)
\(f: \mathbb{R}^2 \rightarrow \mathbb{C} \)
\(f(x, y) = (u(x, y), v(x, y)) \)
\(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

So we see that functions from \(\mathbb{C} \rightarrow \mathbb{C} \) are
also the functions \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

Example: Write \(f(z) = \frac{1}{z} \) as
\(f(x, y) = u(x, y) + iv(x, y) \).