A sequence of functions,

\[f_n(z) \]

is said to converge uniformly to a function \(f(z) \) on the set \(T \) if

\[|f_n(z) - f(z)| < \varepsilon \]

for all \(z \in T \) if \(n \) is big enough.

We say \(\sum_{j=0}^{\infty} f_j(z) \) converges uniformly on \(T \) if the sequence of partial sums, \(s_n(z) = \sum_{j=0}^{n} f_j(z) \), converges uniformly on \(T \).

We like uniform convergence because it preserves: continuity, analyticity, derivatives, integrals, etc.

We are distinguishing from pointwise convergence.

§5.2 Taylor Series

We've seen Taylor form for polynomials, now we have it for all analytic functions.

Definition 3: If \(f \) is analytic on the open disk \(|z-z_0| < r \) then
\[f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n = f(z_0) + \frac{f'(z_0)}{1!}(z-z_0) + \frac{f''(z_0)}{2!}(z-z_0)^2 + \ldots \]

Converges on the open disk and converges uniformly on any smaller disk \(|z-z_0| \leq r\) where \(r < R\).

This is called the Taylor series expansion of \(f(z)\). If \(z_0 = 0\) it is called the Maclaurin series for \(f(z)\). \(R\) is the radius of convergence.

Why? \[f(z) = \frac{1}{2\pi i} \oint_{C_r} \frac{f(w)}{w-z} \, dw \quad \text{and} \quad \frac{1}{w-z} = \frac{1}{w-z_0} - \frac{1}{w-z_0} \frac{1}{1 - \frac{(z-z_0)}{w-z_0}} = \frac{1}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0} \right)^n \]

so \[f(z) = \frac{1}{2\pi i} \oint_{C_r} \frac{f(w)}{w-z} \, dw = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} \left(\frac{z-z_0}{w-z_0} \right)^n \right|_{C_r} \]

Interchange order of summation and integration because of uniform convergence.

Examples: Find the Maclaurin series expansion of \(\log(1+z)\) and radius of convergence.

The largest disk we can make around \(z_0 = 0\) where \(\log(1+z)\) is analytic is radius 1, so that's where series converges, \(|z| < 1\).
\[\frac{d \log(1-z)}{dz} = -\frac{1}{1-z} = -(1-z)^{-1} \]

\[\frac{d^2 \log(1-z)}{dz^2} = -(1-z)^{-2} \]

\[\frac{d^3 \log(1-z)}{dz^3} = -2(1-z)^{-3} \]

\[\vdots \]

\[\frac{d^n \log(1-z)}{dz^n} = -(n-1)! (1-z)^{-n} \]

So, \(a_n = \frac{d^n \log(1-z)}{dz^n} \bigg|_{z=0} = -(n-1)! \). For \(n = 1, 2, 3, \ldots \) and \(a_n \log(1-z) = 0 \)

\[\log(1-z) = \sum_{n=1}^{\infty} \frac{-(n-1)!}{n!} (1-z)^n = \sum_{n=0}^{\infty} \frac{-z^n}{n} \]

Theorem 4: If \(f(z) \) is analytic on \(|z-z_0| < r \)

Then the Taylor series of \(f'(z) \) can be obtained by term-by-term differentiation with same radius of convergence.

Example: From previous example,

\[-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} \]

So, \(\frac{1}{1-z} = \frac{d}{dz} \left(-\log(1-z) \right) = \frac{d}{dz} \sum_{n=1}^{\infty} \frac{z^n}{n} \]

\[= \sum_{n=1}^{\infty} \frac{nz^{n-1}}{n} = \sum_{n=1}^{\infty} z^{n-1} = \sum_{n=0}^{\infty} z^n \]

For \(|z| < 1 \).

Example \(e^z \) is analytic everywhere, thus

radius of convergence is infinite, also